Cyclic Urea Amides:  HIV-1 Protease Inhibitors with Low Nanomolar Potency against both Wild Type and Protease Inhibitor Resistant Mutants of HIV

Journal of Medicinal Chemistry
1997.0

Abstract

Cyclic urea amides, a novel series of HIV-1 protease (HIV PR) inhibitors, have increased activity against drug-resistant mutants of the HIV PR. The design strategy for these inhibitors is based on the hypotheses that (i) the hydrogen-bonding interactions between the inhibitor and the protease backbone will remain constant for wild-type and mutant enzymes and (ii) inhibitors which are capable of forming many nonbonded interactions, distributed throughout the active site, will experience a lower percent change in binding energy as a result of mutation in the target enzyme than those that form fewer interactions by partial occupation of the active site. The cyclic urea amide, SD146, forms 14 hydrogen bonds and 191 van der Waals contacts to HIV PR. SD146 is a very potent antiviral agent (IC90 = 5.1 nM) against wild-type HIV and maintains the same or improved level of high potency against a range of mutant strains of HIV with resistance to a wide variety of HIV protease inhibitors.

Knowledge Graph

Similar Paper

Cyclic Urea Amides:  HIV-1 Protease Inhibitors with Low Nanomolar Potency against both Wild Type and Protease Inhibitor Resistant Mutants of HIV
Journal of Medicinal Chemistry 1997.0
Nonsymmetric P2/P2‘ Cyclic Urea HIV Protease Inhibitors. Structure−Activity Relationship, Bioavailability, and Resistance Profile of Monoindazole-Substituted P2 Analogues
Journal of Medicinal Chemistry 1998.0
HIV Protease Inhibitory Bis-benzamide Cyclic Ureas:  A Quantitative Structure−Activity Relationship Analysis
Journal of Medicinal Chemistry 1996.0
Cyclic HIV Protease Inhibitors:  Synthesis, Conformational Analysis, P2/P2‘ Structure−Activity Relationship, and Molecular Recognition of Cyclic Ureas
Journal of Medicinal Chemistry 1996.0
Structure-Based Design of Novel HIV-1 Protease Inhibitors To Combat Drug Resistance
Journal of Medicinal Chemistry 2006.0
Preparation and Structure−Activity Relationship of Novel P1/P1‘-Substituted Cyclic Urea-Based Human Immunodeficiency Virus Type-1 Protease Inhibitors
Journal of Medicinal Chemistry 1996.0
Nonpeptide Cyclic Cyanoguanidines as HIV-1 Protease Inhibitors:  Synthesis, Structure−Activity Relationships, and X-ray Crystal Structure Studies
Journal of Medicinal Chemistry 1998.0
The synthesis and evaluation of cyclic ureas as HIV protease inhibitors: Modifications of the P1/P1′ residues
Bioorganic & Medicinal Chemistry Letters 1998.0
Design of HIV-1 Protease Inhibitors with C3-Substituted Hexahydrocyclopentafuranyl Urethanes as P2-Ligands: Synthesis, Biological Evaluation, and Protein–Ligand X-ray Crystal Structure
Journal of Medicinal Chemistry 2011.0
Design, Synthesis, Protein−Ligand X-ray Structure, and Biological Evaluation of a Series of Novel Macrocyclic Human Immunodeficiency Virus-1 Protease Inhibitors to Combat Drug Resistance
Journal of Medicinal Chemistry 2009.0