Synthesis, Evaluation, and Comparative Molecular Field Analysis of 1-Phenyl-3-amino-1,2,3,4-tetrahydronaphthalenes as Ligands for Histamine H1 Receptors

Journal of Medicinal Chemistry
1999.0

Abstract

A series of 1-phenyl-3-amino-1,2,3,4-tetrahydronaphthalenes (1-phenyl-3-aminotetralins, PATs) previously was found to modulate tyrosine hydroxylase activity and dopamine synthesis in rodent forebrain through interaction with a binding site labeled by [(3)H]-(-)-(1R,3S)-trans-H(2)-PAT. Recently, we have discovered that PATs also bind with high affinity to the [(3)H]mepyramine-labeled H(1) receptor in rat and guinea pig brain. Here, we report the synthesis and biological evaluation of additional PAT analogues in order to identify differences in binding at these two sites. Further molecular modifications involve the pendant phenyl ring as well as quaternary amine compounds. Comparison of about 38 PAT analogues, 10 structurally diverse H(1) ligands, and several other CNS-active compounds revealed no significant differences in affinity at [(3)H]-(-)-trans-H(2)-PAT sites versus [(3)H]mepyramine-labeled H(1) receptors. These results, together with previous autoradiographic brain receptor-mapping studies that indicate similar distribution of [(3)H]-(-)-trans-H(2)-PAT sites and [(3)H]mepyramine-labeled H(1) receptors, suggest that both radioligands label the same histamine H(1) receptors in rodent brain. We also report a revision of our previous comparative molecular field analysis (CoMFA) study of the PAT ligands that yields a highly predictive model for 66 compounds with a cross-validated R(2) (q(2)) value of 0.67. This model will be useful for the prediction of high-affinity ligands at radiolabeled H(1) receptors in mammalian brain.

Knowledge Graph

Similar Paper

Synthesis, Evaluation, and Comparative Molecular Field Analysis of 1-Phenyl-3-amino-1,2,3,4-tetrahydronaphthalenes as Ligands for Histamine H<sub>1</sub> Receptors
Journal of Medicinal Chemistry 1999.0
Conformational Analysis, Pharmacophore Identification, and Comparative Molecular Field Analysis of Ligands for the Neuromodulatory .sigma.3 Receptor
Journal of Medicinal Chemistry 1994.0
Structure–activity correlations for β-phenethylamines at human trace amine receptor 1
Bioorganic &amp; Medicinal Chemistry 2008.0
Comparative molecular field analysis (CoMFA) models of phenylethanolamine N-methyltransferase (PNMT) and the α2-adrenoceptor: The development of new, highly selective inhibitors of PNMT
Bioorganic &amp; Medicinal Chemistry Letters 1999.0
Melatonin Receptor Ligands:  Synthesis of New Melatonin Derivatives and Comprehensive Comparative Molecular Field Analysis (CoMFA) Study
Journal of Medicinal Chemistry 1998.0
Piperidine variations in search for non-imidazole histamine H3 receptor ligands
Bioorganic &amp; Medicinal Chemistry 2008.0
Cytisine derivatives as high affinity nAChR ligands: synthesis and comparative molecular field analysis
Il Farmaco 2002.0
Cytisine derivatives as high affinity nAChR ligands: synthesis and comparative molecular field analysis
Il Farmaco 2002.0
Synthesis and Histamine H1 Receptor Agonist Activity of a Series of 2-Phenylhistamines, 2-Heteroarylhistamines, and Analogs
Journal of Medicinal Chemistry 1995.0
Histaprodifens:  Synthesis, Pharmacological in Vitro Evaluation, and Molecular Modeling of a New Class of Highly Active and Selective Histamine H<sub>1</sub>-Receptor Agonists
Journal of Medicinal Chemistry 2000.0