Phenothiazine Inhibitors of Trypanothione Reductase as Potential Antitrypanosomal and Antileishmanial Drugs

Journal of Medicinal Chemistry
1998.0

Abstract

Given the role of trypanothione in the redox defenses of pathogenic trypanosomal and leishmanial parasites, in contrast to glutathione for their mammalian hosts, selective inhibitors of trypanothione reductase are potential drug leads against trypanosomiasis and leishmaniasis. In the present study, the rational drug design approach was used to discover tricyclic neuroleptic molecular frameworks as lead structures for the development of inhibitors, selective for trypanothione reductase over host glutathione reductase. From a homology-modeled structure for trypanothione reductase, replaced in the later stages of the study by the X-ray coordinates for the enzyme from Crithidia fasciculata, a series of inhibitors based on phenothiazine was designed. These were shown to be reversible inhibitors of trypanothione reductase from Trypanosoma cruzi, linearly competitive with trypanothione as substrate and noncompetitive with NADPH, consistent with ping-pong bi bi kinetics. Analogues, synthesized to define structure-activity relationships for the active site, included N-acylpromazines, 2-substituted phenothiazines, and trisubstituted promazines. Analysis of Ki and I50 data, on the basis of calculated log P and molar refractivity values, provided evidence of a specially favored fit of small 2-substituents (especially 2-chloro and 2-trifluoromethyl), with a remote hydrophobic patch on the enzyme accessible for larger, hydrophobic 2-substituents. There was also evidence of an additional hydrophobic enzymic region available to suitable N-substituents of the promazine nucleus. Ki data also indicated that the phenothiazine nucleus can adopt more than one inhibitory orientation in its binding site. Selected compounds were tested for in vitro activity against Trypanosoma brucei, T. cruzi, and Leishmania donovani, with selective activities in the micromolar range being determined for a number of them.

Knowledge Graph

Similar Paper

Phenothiazine Inhibitors of Trypanothione Reductase as Potential Antitrypanosomal and Antileishmanial Drugs
Journal of Medicinal Chemistry 1998.0
Use of an Additional Hydrophobic Binding Site, the Z Site, in the Rational Drug Design of a New Class of Stronger Trypanothione Reductase Inhibitor, Quaternary Alkylammonium Phenothiazines
Journal of Medicinal Chemistry 2000.0
Privileged structure-guided synthesis of quinazoline derivatives as inhibitors of trypanothione reductase
Bioorganic & Medicinal Chemistry Letters 2009.0
The use of natural product scaffolds as leads in the search for trypanothione reductase inhibitors
Bioorganic & Medicinal Chemistry 2008.0
Inhibitory effect of phenothiazine- and phenoxazine-derived chloroacetamides on Leishmania major growth and Trypanosoma brucei trypanothione reductase
European Journal of Medicinal Chemistry 2016.0
Pyridazino-pyrrolo-quinoxalinium salts as highly potent and selective leishmanicidal agents targeting trypanothione reductase
European Journal of Medicinal Chemistry 2022.0
Efficient Dimerization Disruption of Leishmania infantum Trypanothione Reductase by Triazole-phenyl-thiazoles
Journal of Medicinal Chemistry 2021.0
Inhibition of Trypanosoma cruzi Trypanothione Reductase by Acridines:  Kinetic Studies and Structure−Activity Relationships
Journal of Medicinal Chemistry 1999.0
Rational design of nitrofuran derivatives: Synthesis and valuation as inhibitors of Trypanosoma cruzi trypanothione reductase
European Journal of Medicinal Chemistry 2017.0
Inhibitors ofTrypanosoma cruziTrypanothione Reductase Revealed by Virtual Screening and Parallel Synthesis
Journal of Medicinal Chemistry 2005.0