1-Aryl-4-[(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)alkyl]piperazines and Their Analogues:  Influence of the Stereochemistry of the Tetrahydronaphthalen-1-yl Nucleus on 5-HT1A Receptor Affinity and Selectivity versus α1 and D2 Receptors. 5

Journal of Medicinal Chemistry
1999.0

Abstract

Some 1-aryl-4-[(5-methoxy-1,2,3, 4-tetrahydronaphthalen-1-yl)-n-propyl]piperazines and their alkylamino and alkylamido analogues, previously studied as 5-HT1A ligands, were prepared in enantiomerically pure form, and their absolute configuration was determined by chemical correlation or by chiroptical properties. They were evaluated for in vitro 5-HT1A, D2, and alpha1 receptor affinity by radioligand binding assays, to study the influence of the chiral carbon atom of the tetrahydronaphthalene nucleus on the 5-HT1A affinity and selectivity. Results indicated that, as regarding the 5-HT1A receptor affinity, there was no difference in affinity between (-)- and (+)-enantiomers as well as the racemate of each compound. The stereochemistry, instead, influenced the selectivity: all (-)-enantiomers displayed affinity values higher than those of (+)-isomers at D2 receptors, and conversely, all (+)-enantiomers displayed affinity values higher than those of (-)-isomers at alpha1 receptors. As a result of this trend, it is not possible to predict the isomer with a better selectivity profile. However, compounds (S)-(+)-2, (S)-(+)-4, and (R)-(+)-6 displayed high affinity for the 5-HT1A receptor (IC50 values ranging between 7.0 and 2.3 nM) and good selectivity (>/=250-fold) versus both D2 and alpha1 receptors. Furthermore, compounds (S)-(+)-4 and (R)-(-)-4 were submitted to the [35S]GTPgammaS binding assay for a preliminary evaluation of their intrinsic activity on the 5-HT1A receptor.

Knowledge Graph

Similar Paper

1-Aryl-4-[(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)alkyl]piperazines and Their Analogues:  Influence of the Stereochemistry of the Tetrahydronaphthalen-1-yl Nucleus on 5-HT<sub>1A</sub> Receptor Affinity and Selectivity versus α<sub>1</sub> and D<sub>2</sub> Receptors. 5
Journal of Medicinal Chemistry 1999.0
High Affinity and Selectivity on 5-HT1A Receptor of 1-Aryl-4-[(1-tetralin)alkyl]piperazines. 2
Journal of Medicinal Chemistry 1995.0
Structure−Activity Relationship Studies on the 5-HT<sub>1A</sub> Receptor Affinity of 1-Phenyl-4-[ω-(α- or β-tetralinyl)alkyl]piperazines. 4
Journal of Medicinal Chemistry 1996.0
trans-4-[4-(Methoxyphenyl)cyclohexyl]-1-arylpiperazines:  A New Class of Potent and Selective 5-HT<sub>1A</sub> Receptor Ligands as Conformationally Constrained Analogues of 4-[3-(5-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]-1- arylpiperazines
Journal of Medicinal Chemistry 2001.0
Synthesis and Structure−Activity Relationships of a New Model of Arylpiperazines. 4. 1-[ω-(4-Arylpiperazin-1-yl)alkyl]-3-(diphenylmethylene)- 2,5-pyrrolidinediones and -3-(9H-fluoren-9-ylidene)-2,5-pyrrolidinediones: Study of the Steric Requirements of the Terminal Amide Fragment on 5-HT<sub>1A</sub> Affinity/Selectivity
Journal of Medicinal Chemistry 1999.0
New (2-Methoxyphenyl)piperazine Derivatives as 5-HT1A Receptor Ligands with Reduced .alpha.1-Adrenergic Activity. Synthesis and Structure-Affinity Relationships
Journal of Medicinal Chemistry 1995.0
1-Aryl-4-[(1-tetralinyl)alkyl]piperazines:  Alkylamido and Alkylamino Derivatives. Synthesis, 5-HT<sub>1A</sub> Receptor Affinity, and Selectivity. 3
Journal of Medicinal Chemistry 1996.0
Further Structure–Activity Relationships Study of Hybrid 7-{[2-(4-Phenylpiperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol Analogues: Identification of a High-Affinity D3-Preferring Agonist with Potent in Vivo Activity with Long Duration of Action
Journal of Medicinal Chemistry 2008.0
[[(Arylpiperazinyl)alkyl]thio]thieno[2,3-d]pyrimidinone Derivatives as High-Affinity, Selective 5-HT<sub>1A</sub> Receptor Ligands
Journal of Medicinal Chemistry 1997.0
Characterization of Potent and Selective Antagonists at Postsynaptic 5-HT1A Receptors in a Series of N4-Substituted Arylpiperazines
Journal of Medicinal Chemistry 1995.0