Synthesis and Biological Evaluation of 2‘,3‘-Didehydro-2‘,3‘-dideoxy-5- fluorocytidine (D4FC) Analogues:  Discovery of Carbocyclic Nucleoside Triphosphates with Potent Inhibitory Activity against HIV-1 Reverse Transcriptase

Journal of Medicinal Chemistry
1999.0

Abstract

The discovery of a novel cytosine nucleoside, beta-D-2', 3'-didehydro-2',3'-dideoxy-5-fluorocytidine (D-D4FC), as a potent antihuman immunodeficiency virus (HIV) agent led us to synthesize a series of analogues and derivatives of beta-D-D4FC that could be more selective and also possess increased glycosidic bond stability. The synthesized D-D4FC analogues were evaluated for anti-HIV-1 activity, anticancer activity, and cytotoxicity in various cells. The biological data demonstrated that the 5-substitution of beta-D-D4FC with bromine (6c) and iodine (6d) resulted in the loss of antiviral activity, and the alpha-D anomer (7a) of D-D4FC was also devoid of activity. The 5-fluorouracil analogues (6b and 7b) of D-D4FC were less potent and more cytotoxic than the parent compound, whereas the beta-L-D4FU (11) showed both potent anti-HIV-1 activity and cytotoxicity. N4- and 5'-O-acyl derivatives (17, 15a-c) of beta-D-D4FC exhibited comparable antiviral activity to beta-D-D4FC. In contrast, the N4-isopropyl derivative (20) of beta-D-D4FC was not active against HIV-1, even at 100 microM. The carbocyclic analogues (26a,b) of D4FC demonstrated weak activity against HIV-1 and no toxicity in various cells. The triphosphates (27a,b) of the carbocyclic nucleosides demonstrated potent inhibitory activity against recombinant HIV-1 reverse transcriptase at submicromolar concentrations. Of the compounds tested as potential anticancer agents, beta-D-, alpha-D-, and beta-L-D4FU (6b, 7b, 11) showed inhibitory activity against rat glioma and modest activity against human lung carcinoma, lymphoblastoid, and skin melanoma cells.

Knowledge Graph

Similar Paper

Synthesis and Biological Evaluation of 2‘,3‘-Didehydro-2‘,3‘-dideoxy-5- fluorocytidine (D4FC) Analogues:  Discovery of Carbocyclic Nucleoside Triphosphates with Potent Inhibitory Activity against HIV-1 Reverse Transcriptase
Journal of Medicinal Chemistry 1999.0
Synthesis, Antiviral Activity, and Mechanism of Drug Resistance of <scp>d</scp>- and <scp>l</scp>-2‘,3‘-Didehydro-2‘,3‘-dideoxy-2‘-fluorocarbocyclic Nucleosides
Journal of Medicinal Chemistry 2005.0
Synthesis and antiviral activity of monofluoro and difluoro analogs of pyrimidine deoxyribonucleosides against human immunodeficiency virus (HIV-1)
Journal of Medicinal Chemistry 1990.0
Synthesis and Biological Evaluation of 2',3'-Dideoxy-L-pyrimidine Nucleosides as Potential Antiviral Agents against Human Immunodeficiency Virus (HIV) and Hepatitis B Virus (HBV)
Journal of Medicinal Chemistry 1994.0
Design, synthesis, and biological evaluation of new 2′-deoxy-2′-fluoro-4′-triazole cytidine nucleosides as potent antiviral agents
European Journal of Medicinal Chemistry 2013.0
Synthesis, Anti-HIV Activity, and Molecular Mechanism of Drug Resistance of <scp>l</scp>-2‘,3‘-Didehydro-2‘,3‘-dideoxy-2‘-fluoro-4‘-thionucleosides
Journal of Medicinal Chemistry 2003.0
Synthesis of enantiomerically pure d- and l-bicyclo[3.1.0]hexenyl carbanucleosides and their antiviral evaluation
Bioorganic &amp; Medicinal Chemistry 2011.0
1-(2,3-Dideoxy-.beta.-D-glycero-pent-2-enofuranosyl)thymine. A highly potent and selective anti-HIV agent
Journal of Medicinal Chemistry 1989.0
Carbocyclic Dinucleoside Polyphosphonates:  Interaction with HIV Reverse Transcriptase and Antiviral Activity
Journal of Medicinal Chemistry 2002.0
Synthesis and anti-HIV activities of unsymmetrical long chain dicarboxylate esters of dinucleoside reverse transcriptase inhibitors
Bioorganic &amp; Medicinal Chemistry Letters 2017.0