Thieno[3,2-b]- and Thieno[2,3-b]pyrrole Bioisosteric Analogues of the Hallucinogen and Serotonin Agonist N,N-Dimethyltryptamine

Journal of Medicinal Chemistry
1999.0

Abstract

The synthesis and biological activity of 6-[2-(N, N-dimethylamino)ethyl]-4H-thieno[3,2-b]pyrrole (3a) and 4-[2-(N, N-dimethylamino)ethyl]-6H-thieno[2,3-b]pyrrole (3b), thienopyrroles as potential bioisosteres of N,N-dimethyltryptamine (1a), are reported. Hallucinogen-like activity was evaluated in the two-lever drug discrimination paradigm using LSD- and DOI-trained rats. Neither 3a nor 3b substituted for LSD or DOI up to doses of 50 micromol/kg. By comparison, 1a fully substituted in LSD-trained rats. However, 3a and 3b fully substituted for the 5-HT1A agonist LY293284 ((-)-(4R)-6-acetyl-4-(di-n-propylamino)-1,3,4, 5-tetrahydrobenz[c,d]indole). Both 3a and 3b induced a brief "serotonin syndrome" and salivation, an indication of 5-HT1A receptor activation. At the cloned human 5-HT2A receptor 3b had about twice the affinity of 3a. At the cloned human 5-HT2B and 5-HT2C receptors, however, 3a had about twice the affinity of 3b. Therefore, thiophene lacks equivalence as a replacement for the phenyl ring in the indole nucleus of tryptamines that bind to 5-HT2 receptor subtypes and possess LSD-like behavioral effects. Whereas both of the thienopyrroles had lower affinity than the corresponding 1a at 5-HT2 receptors, 3a and 3b had significantly greater affinity than 1a at the 5-HT1A receptor. Thus, thienopyrrole does appear to serve as a potent bioisostere for the indole nucleus in compounds that bind to the serotonin 5-HT1A receptor. These differences in biological activity suggest that serotonin receptor isoforms are very sensitive to subtle changes in the electronic character of the aromatic systems of indole compounds.

Knowledge Graph

Similar Paper

Thieno[3,2-b]- and Thieno[2,3-b]pyrrole Bioisosteric Analogues of the Hallucinogen and Serotonin Agonist N,N-Dimethyltryptamine
Journal of Medicinal Chemistry 1999.0
Benzofuran bioisosteres of hallucinogenic tryptamines
Journal of Medicinal Chemistry 1992.0
Synthesis, biological activity and electrostatic properties of 3-[2-(dimethylamino)ethyl]-5-[(3-amino-1,2,4-thiadiazol-5-yl)methyl]-1H-indole, a novel 5-HT1D receptor agonist.
Bioorganic & Medicinal Chemistry Letters 1993.0
Further Studies on Oxygenated Tryptamines with LSD-like Activity Incorporating a Chiral Pyrrolidine Moiety into the Side Chain
Journal of Medicinal Chemistry 1999.0
Oxygen isosteric derivatives of 3-(3-hydroxyphenyl)-N-n-propylpiperidine
Journal of Medicinal Chemistry 1992.0
Synthesis of 4,5,6,7-tetrahydrothieno[3,2-c]pyridines and comparison with their isosteric 1,2,3,4-tetrahydroisoquinolines as inhibitors of phenylethanolamine N-methyltransferase
Bioorganic & Medicinal Chemistry 2008.0
2,3-Dihydro and carbocyclic analogs of tryptamines: interaction with serotonin receptors
Journal of Medicinal Chemistry 1982.0
Structure-activity relationships for hallucinogenic N,N-dialkyltryptamines: photoelectron spectra and serotonin receptor affinities of methylthio and methylenedioxy derivatives
Journal of Medicinal Chemistry 1982.0
1-(2-Aminoethyl)-3-methyl-8,9-dihydropyrano[3,2-e]indole: a rotationally restricted phenolic analog of the neurotransmitter serotonin and agonist selective for serotonin (5-HT2-type) receptors
Journal of Medicinal Chemistry 1992.0
Synthesis and biological evaluation of novel pyrrolidine-2,5-dione derivatives as potential antidepressant agents. Part 1
European Journal of Medicinal Chemistry 2013.0