Characterization of the Binding Site of the Histamine H3 Receptor. 1. Various Approaches to the Synthesis of 2-(1H-Imidazol-4-yl)cyclopropylamine and Histaminergic Activity of (1R,2R)- and (1S,2S)-2-(1H-Imidazol-4-yl)- cyclopropylamine

Journal of Medicinal Chemistry
1999.0

Abstract

Various approaches to the synthesis of all four stereoisomers of 2-(1H-imidazol-4-yl)cyclopropylamine (cyclopropylhistamine) are described. The rapid and convenient synthesis and resolution of trans-cyclopropylhistamine is reported. The absolute configuration of its enantiomers was determined by single-crystal X-ray crystallographic analysis. The distinct trans-cyclopropylhistamine enantiomers were tested for their activity and affinity on the histamine H3 receptor. (1S,2S)-Cyclopropylhistamine (VUF 5297) acts as an agonist both on the rat cortex (pD2 = 7.1; alpha = 0.75) and on guinea pig jejunum (pD2 = 6.6; alpha = 0.75). Its enantiomer, (1R, 2R)-cyclopropylhistamine (VUF 5296), is about 1 order of magnitude less active. Both enantiomers show weak activity on H1 and H2 receptors. All synthetic attempts to cis-cyclopropylhistamine were unsuccessful. Nevertheless, the results of this study provide an ideal template for molecular modeling studies of histamine H3 receptor ligands.

Knowledge Graph

Similar Paper

Characterization of the Binding Site of the Histamine H<sub>3</sub> Receptor. 1. Various Approaches to the Synthesis of 2-(1H-Imidazol-4-yl)cyclopropylamine and Histaminergic Activity of (1R,2R)- and (1S,2S)-2-(1H-Imidazol-4-yl)- cyclopropylamine
Journal of Medicinal Chemistry 1999.0
Cyclopropane-Based Conformational Restriction of Histamine. (1S,2S)-2-(2-Aminoethyl)-1-(1H-imidazol-4-yl)cyclopropane, a Highly Selective Agonist for the Histamine H<sub>3</sub> Receptor, Having a cis-Cyclopropane Structure
Journal of Medicinal Chemistry 2003.0
Synthesis and in Vitro Pharmacology of a Series of New Chiral Histamine H<sub>3</sub>-Receptor Ligands:  2-(RandS)-Amino-3-(1H-imidazol-4(5)-yl)propyl Ether Derivatives
Journal of Medicinal Chemistry 1999.0
Stereochemical Diversity-Oriented Conformational Restriction Strategy. Development of Potent Histamine H<sub>3</sub>and/or H<sub>4</sub>Receptor Antagonists with an Imidazolylcyclopropane Structure
Journal of Medicinal Chemistry 2006.0
4-(3-Aminoazetidin-1-yl)pyrimidin-2-amines as High-Affinity Non-imidazole Histamine H<sub>3</sub> Receptor Agonists with in Vivo Central Nervous System Activity
Journal of Medicinal Chemistry 2019.0
Histaprodifens:  Synthesis, Pharmacological in Vitro Evaluation, and Molecular Modeling of a New Class of Highly Active and Selective Histamine H<sub>1</sub>-Receptor Agonists
Journal of Medicinal Chemistry 2000.0
Chiral NG-acylated hetarylpropylguanidine-type histamine H2 receptor agonists do not show significant stereoselectivity
Bioorganic &amp; Medicinal Chemistry Letters 2010.0
Conformational Restriction and Enantioseparation Increase Potency and Selectivity of Cyanoguanidine-Type Histamine H<sub>4</sub>Receptor Agonists
Journal of Medicinal Chemistry 2016.0
Synthesis and Structure−Activity Relationships of Conformationally Constrained Histamine H<sub>3</sub> Receptor Agonists
Journal of Medicinal Chemistry 2003.0
Piperidine variations in search for non-imidazole histamine H3 receptor ligands
Bioorganic &amp; Medicinal Chemistry 2008.0