Conformational Restriction and Enantioseparation Increase Potency and Selectivity of Cyanoguanidine-Type Histamine H4Receptor Agonists

Journal of Medicinal Chemistry
2016.0

Abstract

2-Cyano-1-[4-(1H-imidazol-4-yl)butyl]-3-[2-(phenylsulfanyl)ethyl]guanidine (UR-PI376, 1) is a potent and selective agonist of the human histamine H4 receptor (hH4R). To gain information on the active conformation, we synthesized analogues of 1 with a cyclopentane-1,3-diyl linker. Affinities and functional activities were determined at recombinant hHxR (x: 1-4) subtypes on Sf9 cell membranes (radioligand binding, [(35)S]GTPγS, or GTPase assays) and in part in luciferase assays on human or mouse H4R (HEK-293 cells). The most potent H4R agonists among 14 racemates were separated by chiral HPLC, yielding eight enantiomerically pure compounds. Configurations were assigned based on X-ray structures of intermediates and a stereocontrolled synthetic pathway. (+)-2-Cyano-1-{[trans-(1S,3S)-3-(1H-imidazol-4-yl)cyclopentyl]methyl}-3-[2-(phenylsulfanyl)ethyl]guanidine ((1S,3S)-UR-RG98, 39a) was the most potent H4R agonist in this series (EC50 11 nM; H4R vs H3R, >100-fold selectivity; H1R, H2R, negligible activities), whereas the optical antipode proved to be an H4R antagonist ([(35)S]GTPγS assay). MD simulations confirmed differential stabilization of the active and inactive H4R state by the enantiomers.

Knowledge Graph

Similar Paper

Conformational Restriction and Enantioseparation Increase Potency and Selectivity of Cyanoguanidine-Type Histamine H<sub>4</sub>Receptor Agonists
Journal of Medicinal Chemistry 2016.0
Synthesis and Structure−Activity Relationships of Cyanoguanidine-Type and Structurally Related Histamine H<sub>4</sub>Receptor Agonists
Journal of Medicinal Chemistry 2009.0
N<sup>G</sup>-Acylated Imidazolylpropylguanidines as Potent Histamine H<sub>4</sub>Receptor Agonists: Selectivity by Variation of theN<sup>G</sup>-Substituent
Journal of Medicinal Chemistry 2009.0
Synthesis, SAR and selectivity of 2-acyl- and 2-cyano-1-hetarylalkyl-guanidines at the four histamine receptor subtypes: a bioisosteric approach
Med. Chem. Commun. 2013.0
A Selective Human H<sub>4</sub>-Receptor Agonist:  (−)-2-Cyano-1-methyl-3-{(2R,5R)-5- [1H-imidazol-4(5)-yl]tetrahydrofuran-2-yl}methylguanidine
Journal of Medicinal Chemistry 2003.0
Agonist/antagonist modulation in a series of 2-aryl benzimidazole H4 receptor ligands
Bioorganic &amp; Medicinal Chemistry Letters 2010.0
Cyclopropane-Based Conformational Restriction of Histamine. (1S,2S)-2-(2-Aminoethyl)-1-(1H-imidazol-4-yl)cyclopropane, a Highly Selective Agonist for the Histamine H<sub>3</sub> Receptor, Having a cis-Cyclopropane Structure
Journal of Medicinal Chemistry 2003.0
Acylguanidines as Bioisosteres of Guanidines:N<sup>G</sup>-Acylated Imidazolylpropylguanidines, a New Class of Histamine H<sub>2</sub>Receptor Agonists
Journal of Medicinal Chemistry 2008.0
Stereochemical Diversity-Oriented Conformational Restriction Strategy. Development of Potent Histamine H<sub>3</sub>and/or H<sub>4</sub>Receptor Antagonists with an Imidazolylcyclopropane Structure
Journal of Medicinal Chemistry 2006.0
Synthesis and Structure−Activity Relationships of Conformationally Constrained Histamine H<sub>3</sub> Receptor Agonists
Journal of Medicinal Chemistry 2003.0