Structure-Based Design, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus 3C Protease Inhibitors. 4. Incorporation of P1 Lactam Moieties as l-Glutamine Replacements

Journal of Medicinal Chemistry
1999.0

Abstract

The structure-based design, chemical synthesis, and biological evaluation of various human rhinovirus (HRV) 3C protease (3CP) inhibitors which incorporate P1 lactam moieties in lieu of an L-glutamine residue are described. These compounds are comprised of a tripeptidyl or peptidomimetic binding determinant and an ethyl propenoate Michael acceptor moiety which forms an irreversible covalent adduct with the active site cysteine residue of the 3C enzyme. The P1-lactam-containing inhibitors display significantly increased 3CP inhibition activity along with improved antirhinoviral properties relative to corresponding L-glutamine-derived molecules. In addition, several lactam-containing compounds exhibit excellent selectivity for HRV 3CP over several other serine and cysteine proteases and are not appreciably degraded by a variety of biological agents. One of the most potent inhibitors (AG7088, mean antirhinoviral EC90 approximately 0.10 microM, n = 46 serotypes) is shown to warrant additional preclinical development to explore its potential for use as an antirhinoviral agent.

Knowledge Graph

Similar Paper

Structure-Based Design, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus 3C Protease Inhibitors. 4. Incorporation of P<sub>1</sub> Lactam Moieties as <scp>l</scp>-Glutamine Replacements
Journal of Medicinal Chemistry 1999.0
Design and synthesis of irreversible depsipeptidyl human rhinovirus 3C protease inhibitors
Bioorganic &amp; Medicinal Chemistry Letters 2001.0
Structure-Based Design, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus 3C Protease Inhibitors. 6. Structure−Activity Studies of Orally Bioavailable, 2-Pyridone-Containing Peptidomimetics
Journal of Medicinal Chemistry 2002.0
Substituted Benzamide Inhibitors of Human Rhinovirus 3C Protease:  Structure-Based Design, Synthesis, and Biological Evaluation
Journal of Medicinal Chemistry 2000.0
Design and structure–activity relationships of novel inhibitors of human rhinovirus 3C protease
Bioorganic &amp; Medicinal Chemistry Letters 2016.0
Structure-Based Design, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus 3C Protease Inhibitors. 8. Pharmacological Optimization of Orally Bioavailable 2-Pyridone-Containing Peptidomimetics
Journal of Medicinal Chemistry 2003.0
Design, synthesis, and evaluation of 3C protease inhibitors as anti-enterovirus 71 agents
Bioorganic &amp; Medicinal Chemistry 2008.0
Small peptidic aldehyde inhibitors of human rhinovirus 3C protease
Bioorganic &amp; Medicinal Chemistry Letters 1996.0
New anti-viral drugs for the treatment of the common cold
Bioorganic &amp; Medicinal Chemistry 2008.0
In Vitro Resistance Study of Rupintrivir, a Novel Inhibitor of Human Rhinovirus 3C Protease
Antimicrobial Agents and Chemotherapy 2007.0