Synthesis, Stability, Antiviral Activity, and Protease-Bound Structures of Substrate-Mimicking Constrained Macrocyclic Inhibitors of HIV-1 Protease

Journal of Medicinal Chemistry
2000.0

Abstract

Three new peptidomimetics (1-3) have been developed with highly stable and conformationally constrained macrocyclic components that replace tripeptide segments of protease substrates. Each compound inhibits both HIV-1 protease and viral replication (HIV-1, HIV-2) at nanomolar concentrations without cytotoxicity to uninfected cells below 10 microM. Their activities against HIV-1 protease (K(i) 1.7 nM (1), 0.6 nM (2), 0.3 nM (3)) are 1-2 orders of magnitude greater than their antiviral potencies against HIV-1-infected primary peripheral blood mononuclear cells (IC(50) 45 nM (1), 56 nM (2), 95 nM (3)) or HIV-1-infected MT2 cells (IC(50) 90 nM (1), 60 nM (2)), suggesting suboptimal cellular uptake. However their antiviral potencies are similar to those of indinavir and amprenavir under identical conditions. There were significant differences in their capacities to inhibit the replication of HIV-1 and HIV-2 in infected MT2 cells, 1 being ineffective against HIV-2 while 2 was equally effective against both virus types. Evidence is presented that 1 and 2 inhibit cleavage of the HIV-1 structural protein precursor Pr55(gag) to p24 in virions derived from chronically infected cells, consistent with inhibition of the viral protease in cells. Crystal structures refined to 1.75 A (1) and 1.85 A (2) for two of the macrocyclic inhibitors bound to HIV-1 protease establish structural mimicry of the tripeptides that the cycles were designed to imitate. Structural comparisons between protease-bound macrocyclic inhibitors, VX478 (amprenavir), and L-735,524 (indinavir) show that their common acyclic components share the same space in the active site of the enzyme and make identical interactions with enzyme residues. This substrate-mimicking minimalist approach to drug design could have benefits in the context of viral resistance, since mutations which induce inhibitor resistance may also be those which prevent substrate processing.

Knowledge Graph

Similar Paper

Synthesis, Stability, Antiviral Activity, and Protease-Bound Structures of Substrate-Mimicking Constrained Macrocyclic Inhibitors of HIV-1 Protease
Journal of Medicinal Chemistry 2000.0
Design, Synthesis, Protein−Ligand X-ray Structure, and Biological Evaluation of a Series of Novel Macrocyclic Human Immunodeficiency Virus-1 Protease Inhibitors to Combat Drug Resistance
Journal of Medicinal Chemistry 2009.0
Highly Potent HIV-1 Protease Inhibitors with Novel Tricyclic P2 Ligands: Design, Synthesis, and Protein–Ligand X-ray Studies
Journal of Medicinal Chemistry 2013.0
Identification of constrained peptidomimetic chemotypes as HIV protease inhibitors
European Journal of Medicinal Chemistry 2014.0
HIV-1 Protease Inhibitors with a Transition-State Mimic Comprising a Tertiary Alcohol: Improved Antiviral Activity in Cells
Journal of Medicinal Chemistry 2010.0
Structure-Based Design of Novel HIV-1 Protease Inhibitors To Combat Drug Resistance
Journal of Medicinal Chemistry 2006.0
Design of HIV-1 Protease Inhibitors with C3-Substituted Hexahydrocyclopentafuranyl Urethanes as P2-Ligands: Synthesis, Biological Evaluation, and Protein–Ligand X-ray Crystal Structure
Journal of Medicinal Chemistry 2011.0
Structure-based design and synthesis of HIV-1 protease inhibitors employing β-d-mannopyranoside scaffolds
Bioorganic & Medicinal Chemistry Letters 2002.0
Design and synthesis of potent HIV-1 protease inhibitors incorporating hydroxyprolinamides as novel P2 ligands
Bioorganic & Medicinal Chemistry Letters 2011.0
Cyclic HIV Protease Inhibitors:  Synthesis, Conformational Analysis, P2/P2‘ Structure−Activity Relationship, and Molecular Recognition of Cyclic Ureas
Journal of Medicinal Chemistry 1996.0