Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 2-exo-2-(2‘-Substituted 5‘-pyridinyl)-7-azabicyclo[2.2.1]heptanes. Epibatidine Analogues

Journal of Medicinal Chemistry
2001.0

Abstract

A convenient, high-yield synthesis of 7-tert-butoxycarbonyl-7-azabicyclo[2.2.1]hept-2-ene (5), which involved the addition of tributyltin hydride to 7-tert-butoxycarbonyl-2-p-toluenesulfonyl-7-azabicyclo[2.2.1]hept-2-ene (4) followed by elimination of the tributyltin and p-tolylsulfonyl groups using tetrabutylammonium fluoride was developed. The addition of 2-amino-5-iodopyridine to 5 under reductive Heck conditions provided 7-tert-butoxycarbonyl-2-exo-(2'-amino-5'-pyridinyl)-7-azabicyclo[2.2.1]heptane (6). Compound 6 was the key intermediate used to prepare epibatidine analogues where the 2'-chloro group on the pyridine ring was replaced with a fluorine (1b), bromine (1c), iodine (1d), hydroxy (1e), amino (1f), dimethylamino (1g), trifluoromethanesulfonate (1h), and hydrogen (1i) group. (+)- and (-)-Epibatidine and compounds 1b-d and 1i all possess similar binding affinities at the alpha(4)beta(2) nAChR receptors labeled by [(3)H]epibatidine. Compound 1f has affinity similar to nicotine, whereas compounds 1e, 1g, and 1h have much lower affinity. The binding affinity appears to be dependent upon the electronic nature of the substituent. However, other factors are also involved. None of the compounds possesses appreciable affinity for the alpha(7) nAChR labeled by [(125)I]iodo-MLA. With the exception of 1f and 1g, all the epibatidine analogues are full agonists (tail flick test) in producing antinociception after intrathecal injection in mice.

Knowledge Graph

Similar Paper

Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 2-exo-2-(2‘-Substituted 5‘-pyridinyl)-7-azabicyclo[2.2.1]heptanes. Epibatidine Analogues
Journal of Medicinal Chemistry 2001.0
Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 2-exo-2-(2‘,3‘-Disubstituted 5‘-pyridinyl)-7-azabicyclo[2.2.1]heptanes:  Epibatidine Analogues
Journal of Medicinal Chemistry 2002.0
Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 2-exo-2-(2‘-Substituted-3‘-phenyl-5‘-pyridinyl)-7-azabicyclo[2.2.1]heptanes. Novel Nicotinic Antagonist
Journal of Medicinal Chemistry 2001.0
exo-2-(Pyridazin-4-yl)-7-azabicyclo[2.2.1]heptanes:  Syntheses and Nicotinic Acetylcholine Receptor Agonist Activity of Potent Pyridazine Analogues of (±)-Epibatidine
Journal of Medicinal Chemistry 2001.0
Synthesis and Biological Evaluation at Nicotinic Acetylcholine Receptors of N-Arylalkyl- and N-Aryl-7-Azabicyclo[2.2.1]heptanes
Journal of Medicinal Chemistry 2002.0
Synthesis and Nicotinic Acetylcholine Receptor Binding Properties of exo-2-(2‘-Fluoro-5‘-pyridinyl)-7-azabicyclo- [2.2.1]heptane:  A New Positron Emission Tomography Ligand for Nicotinic Receptors
Journal of Medicinal Chemistry 1997.0
Synthesis and Nicotinic Acetylcholine Receptor Binding Properties of Bridged and Fused Ring Analogues of Epibatidine
Journal of Medicinal Chemistry 2007.0
Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 2′-Fluoro-3′-(substituted pyridinyl)-7-deschloroepibatidine Analogues
Journal of Medicinal Chemistry 2014.0
Synthesis and binding affinity at α4β2 and α7 nicotinic acetylcholine receptors of new analogs of epibatidine and epiboxidine containing the 7-azabicyclo[2.2.1]hept-2-ene ring system
Bioorganic & Medicinal Chemistry Letters 2012.0
Syntheses and biological properties of cysteine-Reactive epibatidine derivatives
Bioorganic & Medicinal Chemistry Letters 2003.0