Synthesis and Nicotinic Acetylcholine Receptor Binding Properties of Bridged and Fused Ring Analogues of Epibatidine

Journal of Medicinal Chemistry
2007.0

Abstract

Epibatidine analogues 3- 5, possessing the pyridine ring fused to the 2,3 position of the 7-azabicyclo[2.2.1]heptane ring, and analogue 8a, possessing a benzene ring fused to the 5,6 position, were synthesized by procedures involving key steps of trapping 2,3-pyridyne, 3,4-pyridyne, and benzyne with tert-butyl 1 H-pyrrole-1-carboxylate. Two epibatidine analogues, 6 and 7, which have the 2'-chloropyridine ring bridged to the 7-azabicyclo[2.2.1]heptane ring via a methylene group, were synthesized, where the key step was an intramolecular reductive palladium-catalyzed Heck-type coupling. Even though the conformationally restricted epibatidine analogues, 3- 7, and the benzo analogue 8a possess nAChR pharmacophore features thought to be needed for alpha(4)beta(2) binding, they all showed low affinity for nAChRs relative to epibatidine. These studies provide new information concerning the pharmacophore for nAChRs and suggest that nitrogen lone-pair directionality and steric factors may be important. Interestingly, N-methylepibatidine, prepared as a standard compound for the study of bridged analogues 6 and 7, was a potent nAChR mixed agonist antagonist.

Knowledge Graph

Similar Paper

Synthesis and Nicotinic Acetylcholine Receptor Binding Properties of Bridged and Fused Ring Analogues of Epibatidine
Journal of Medicinal Chemistry 2007.0
Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 2-exo-2-(2‘-Substituted 5‘-pyridinyl)-7-azabicyclo[2.2.1]heptanes. Epibatidine Analogues
Journal of Medicinal Chemistry 2001.0
exo-2-(Pyridazin-4-yl)-7-azabicyclo[2.2.1]heptanes:  Syntheses and Nicotinic Acetylcholine Receptor Agonist Activity of Potent Pyridazine Analogues of (±)-Epibatidine
Journal of Medicinal Chemistry 2001.0
Synthesis and binding affinity at α4β2 and α7 nicotinic acetylcholine receptors of new analogs of epibatidine and epiboxidine containing the 7-azabicyclo[2.2.1]hept-2-ene ring system
Bioorganic & Medicinal Chemistry Letters 2012.0
Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 2-exo-2-(2‘,3‘-Disubstituted 5‘-pyridinyl)-7-azabicyclo[2.2.1]heptanes:  Epibatidine Analogues
Journal of Medicinal Chemistry 2002.0
Synthesis, nicotinic acetylcholine receptor binding, in vitro and in vivo pharmacology properties of 3′-(substituted pyridinyl)-deschloroepibatidine analogs
Bioorganic & Medicinal Chemistry 2015.0
Syntheses and biological properties of cysteine-Reactive epibatidine derivatives
Bioorganic & Medicinal Chemistry Letters 2003.0
Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 2-exo-2-(2‘-Substituted-3‘-phenyl-5‘-pyridinyl)-7-azabicyclo[2.2.1]heptanes. Novel Nicotinic Antagonist
Journal of Medicinal Chemistry 2001.0
Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 2′-Fluoro-3′-(substituted pyridinyl)-7-deschloroepibatidine Analogues
Journal of Medicinal Chemistry 2014.0
Synthesis and Nicotinic Acetylcholine Receptor Binding Properties of exo-2-(2‘-Fluoro-5‘-pyridinyl)-7-azabicyclo- [2.2.1]heptane:  A New Positron Emission Tomography Ligand for Nicotinic Receptors
Journal of Medicinal Chemistry 1997.0