Design, Synthesis, and Biological Characterization of Bivalent 1-Methyl-1,2,5,6-tetrahydropyridyl-1,2,5-thiadiazole Derivatives as Selective Muscarinic Agonists

Journal of Medicinal Chemistry
2001.0

Abstract

Selective muscarinic agonists could be useful in the treatment of neurological disorders such as Alzheimer's disease, schizophrenia, and chronic pain. Many muscarinic agonists have been developed, yet most exhibit at best limited functional selectivity for a given receptor subtype perhaps because of the high degree of sequence homology within the putative binding site, which appears to be buried within the transmembrane domains. Bivalent compounds containing essentially two agonist pharmacophores within the same molecule were synthesized and tested for receptor binding affinity and muscarinic agonist activity. A series of bis-1,2,5-thiadiazole derivatives of 1,2,5,6-tetrahydropyridine linked by an alkyloxy moiety exhibited very high affinity (K(i) < 1 nM) and strong agonist activity. The degree of activity depended on the length of the linking alkyl group, which could be replaced by a poly(ethylene glycol) moiety, resulting in improved water solubility, binding affinity, and agonist potency.

Knowledge Graph

Similar Paper

Design, Synthesis, and Biological Characterization of Bivalent 1-Methyl-1,2,5,6-tetrahydropyridyl-1,2,5-thiadiazole Derivatives as Selective Muscarinic Agonists
Journal of Medicinal Chemistry 2001.0
Novel functional M1 selective muscarinic agonists. Synthesis and structure-activity relationships of 3-(1,2,5-thiadiazolyl)-1,2,5,6-tetrahydro-1-methylpyridines
Journal of Medicinal Chemistry 1992.0
Synthesis and Biological Characterization of 1,4,5,6-Tetrahydropyrimidine and 2-Amino-3,4,5,6-tetrahydropyridine Derivatives as Selective m1 Agonists
Journal of Medicinal Chemistry 1997.0
Synthesis and muscarinic activities of 1,2,4-thiadiazoles
Journal of Medicinal Chemistry 1990.0
Muscarinic Agonists with Antipsychotic-like Activity:  Structure−Activity Relationships of 1,2,5-Thiadiazole Analogues with Functional Dopamine Antagonist Activity
Journal of Medicinal Chemistry 1998.0
Muscarinic cholinergic agonists and antagonists of the 3-(3-alkyl-1,2,4-oxadiazol-5-yl)-1,2,5,6-tetrahydropyridine type. Synthesis and structure-activity relationships
Journal of Medicinal Chemistry 1991.0
Bioisosteres of Arecoline: 1,2,3,6-Tetrahydro-5-pyridyl-Substituted and 3-Piperidyl-Substituted Derivatives of Tetrazoles and 1,2,3-Triazoles. Synthesis and Muscarinic Activity
Journal of Medicinal Chemistry 1994.0
Design, synthesis, and neurochemical evaluation of 5-(3-alkyl-1,2,4-oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidines as M1 muscarinic receptor agonists
Journal of Medicinal Chemistry 1993.0
Design, Synthesis, and Neurochemical Evaluation of 2-Amino-5-(alkoxycarbonyl)-3,4,5,6-tetrahydropyridines and 2-Amino-5-(alkoxycarbonyl)-1,4,5,6-tetrahydropyrimidines as M1 Muscarinic Receptor Agonists
Journal of Medicinal Chemistry 1994.0
A novel class of conformationally restricted heterocyclic muscarinic agonists
Journal of Medicinal Chemistry 1986.0