Synthesis and Biological Characterization of 1,4,5,6-Tetrahydropyrimidine and 2-Amino-3,4,5,6-tetrahydropyridine Derivatives as Selective m1 Agonists

Journal of Medicinal Chemistry
1997.0

Abstract

Previous studies identified several novel tetrahydropyrimidine derivatives exhibiting muscarinic agonist activity in rat brain. Such compounds might be useful in treating cognitive and memory deficits associated with low acetylcholine levels, as found in Alzheimer's disease. To determine the molecular features of ligands important for binding and activity at muscarinic receptor subtypes, the series of tetrahydropyrimidines was extended. Several active compounds were examined further for functional selectivity through biochemical studies of muscarinic receptor activity using receptor subtypes expressed in cell lines. Several amidine derivatives displayed high efficacy at m1 receptors and lower activity at m3 receptors coupled to phosphoinositide (PI) metabolism in A9 L cells. Four ligands, including 1b, 1f, 2b, and 7b, exhibited marked functional selectivity for m1 vs m3 receptors. Compound 1f also exhibited low activity at m2 receptors coupled to the inhibition of adenylyl cyclase in A9 L cells. Molecular modeling studies also were initiated to help understand the nature of the interaction of muscarinic agonists with the m1 receptor using a nine amino model of the m1 receptor. Several important interactions were identified, including interactions between the ester moiety and Thr192. Additional interactions were found for oxadiazoles and alkynyl derivatives with Asn382, suggesting that enhanced potency and selectivity may be achieved by maximizing interactions with Asp105, Thr192, and Asn382. Taken together, the data indicate that several amidine derivatives display functional selectivity for m1 muscarinic receptors, warranting further evaluation as therapeutic agents for the treatment of Alzheimer's disease. In addition, several amino acid residues were identified as potential binding sites for m1 agonists. These data may be useful in directing efforts to develop even more selective m1 agonists.

Knowledge Graph

Similar Paper

Synthesis and Biological Characterization of 1,4,5,6-Tetrahydropyrimidine and 2-Amino-3,4,5,6-tetrahydropyridine Derivatives as Selective m1 Agonists
Journal of Medicinal Chemistry 1997.0
Design, Synthesis, and Neurochemical Evaluation of 2-Amino-5-(alkoxycarbonyl)-3,4,5,6-tetrahydropyridines and 2-Amino-5-(alkoxycarbonyl)-1,4,5,6-tetrahydropyrimidines as M1 Muscarinic Receptor Agonists
Journal of Medicinal Chemistry 1994.0
Design, Synthesis, and Biological Characterization of Bivalent 1-Methyl-1,2,5,6-tetrahydropyridyl-1,2,5-thiadiazole Derivatives as Selective Muscarinic Agonists
Journal of Medicinal Chemistry 2001.0
Novel functional M1 selective muscarinic agonists. 2. Synthesis and structure-activity relationships of 3-pyrazinyl-1,2,5,6-tetrahydro-1-methylpyridines. Construction of a molecular model for the M1 pharmacophore
Journal of Medicinal Chemistry 1992.0
Design, synthesis, and neurochemical evaluation of 5-(3-alkyl-1,2,4-oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidines as M1 muscarinic receptor agonists
Journal of Medicinal Chemistry 1993.0
Synthesis and biological evaluation of isoxazoline derivatives as potent M1 muscarinic acetylcholine receptor agonists
Bioorganic & Medicinal Chemistry Letters 2015.0
Novel functional M1 selective muscarinic agonists. Synthesis and structure-activity relationships of 3-(1,2,5-thiadiazolyl)-1,2,5,6-tetrahydro-1-methylpyridines
Journal of Medicinal Chemistry 1992.0
Bioisosteres of Arecoline: 1,2,3,6-Tetrahydro-5-pyridyl-Substituted and 3-Piperidyl-Substituted Derivatives of Tetrazoles and 1,2,3-Triazoles. Synthesis and Muscarinic Activity
Journal of Medicinal Chemistry 1994.0
Synthesis, biochemical activity and behavioral effects of a series of 1,4,5,6-tetrahydropyrimidines as novel ligands for M1 receptors
Bioorganic & Medicinal Chemistry Letters 1992.0
Design and synthesis of N-[6-(Substituted Aminoethylideneamino)-2-Hydroxyindan-1-yl]arylamides as selective and potent muscarinic M1 agonists
Bioorganic & Medicinal Chemistry Letters 2015.0