New Synthesis of Benzo-δ-carbolines, Cryptolepines, and Their Salts: In Vitro Cytotoxic, Antiplasmodial, and Antitrypanosomal Activities of δ-Carbolines, Benzo-δ-carbolines, and Cryptolepines

Journal of Medicinal Chemistry
2001.0

Abstract

The paper describes, in its first part, a new synthesis of benzo-delta-carbolines, cryptolepines, and their salts. The strategy is based on the association between halogen-dance and hetero-ring cross-coupling. It is fully convergent and regioselective with interesting overall yields from 27% to 70%. A halogen-dance mechanism in quinoline series is also proposed. The formal synthesis of potential antimalarial compounds and the first total synthesis of 11-isopropylcryptolepine are also described. In the second part, cytotoxic activity against mammalian cells and activities against Plasmodium falciparum and Trypanosoma cruzi of benzo-delta-carbolines and delta-carbolines were evaluated in vitro to study the structure-activity relationships. For benzo-delta-carbolines, methylation at N-5 increases the cytotoxic and antiparasitic activities. A further alkylation on C-11 generally increases the cytotoxic activity but not the antiparasitic activity, cryptolepine and 11-methylcryptolepine being the most active on both parasites. Taking advantage of the fluorescence of the indoloquinoline chromophore, cryptolepine was localized by fluorescence microscopy in parasite DNA-containing structures suggesting that these compounds act through interaction with parasite DNA as proposed for cryptolepine on melanoma cells. For delta-carbolines, methylation at N-1 is essential for the antimalarial activity. 1-Methyl-delta-carboline specifically accumulates in the intracellular parasite. It has weak cytotoxic activity and can be considered as a potential antimalarial compound.

Knowledge Graph

Similar Paper

New Synthesis of Benzo-δ-carbolines, Cryptolepines, and Their Salts: In Vitro Cytotoxic, Antiplasmodial, and Antitrypanosomal Activities of δ-Carbolines, Benzo-δ-carbolines, and Cryptolepines
Journal of Medicinal Chemistry 2001.0
Synthesis and Evaluation of Cryptolepine Analogues for Their Potential as New Antimalarial Agents
Journal of Medicinal Chemistry 2001.0
Synthesis, Cytotoxicity, and Antiplasmodial and Antitrypanosomal Activity of New Neocryptolepine Derivatives
Journal of Medicinal Chemistry 2002.0
Structure–activity relationship of antiparasitic and cytotoxic indoloquinoline alkaloids, and their tricyclic and bicyclic analogues
Bioorganic & Medicinal Chemistry 2009.0
Incorporation of Basic Side Chains into Cryptolepine Scaffold: Structure−Antimalarial Activity Relationships and Mechanistic Studies
Journal of Medicinal Chemistry 2011.0
δ-Carbolines and their ring-opened analogs: Synthesis and evaluation against fungal and bacterial opportunistic pathogens
European Journal of Medicinal Chemistry 2011.0
Synthesis and antimalarial evaluation of novel isocryptolepine derivatives
Bioorganic & Medicinal Chemistry 2011.0
Synthesis and Antiplasmodial Activity of Aminoalkylamino-Substituted Neocryptolepine Derivatives
Journal of Medicinal Chemistry 2009.0
Synthesis of isocryptolepine analogues and their structure–activity relationship studies as antiplasmodial and antiproliferative agents
European Journal of Medicinal Chemistry 2015.0
Synthesis and in Vitro Antimalarial Testing of Neocryptolepines: SAR Study for Improved Activity by Introduction and Modifications of Side Chains at C2 and C11 on Indolo[2,3-b]quinolines
Journal of Medicinal Chemistry 2013.0