Design and Synthesis of Novel 5-Substituted Acyclic Pyrimidine Nucleosides as Potent and Selective Inhibitors of Hepatitis B Virus

Journal of Medicinal Chemistry
2002.0

Abstract

A novel class of 5-substituted acyclic pyrimidine nucleosides, 1-[(2-hydroxyethoxy)methyl]-5-(1-azidovinyl)uracil (9a), 1-[(2-hydroxy-1-(hydroxymethyl)ethoxy)methyl]-5-(1-azidovinyl)uracil (9b), and 1-[4-hydroxy-3-(hydroxymethyl)-1-butyl]-5-(1-azidovinyl)uracil (9c), were synthesized by regiospecific addition of bromine azide to the 5-vinyl substituent of the respective 5-vinyluracils (2a-c) followed by treatment of the obtained 5-(1-azido-2-bromoethyl) compounds (3a-c) with t-BuOK, to affect the base-catalyzed elimination of HBr. Thermal decomposition of 9b and 9c at 110 degrees C in dioxane yielded corresponding 5-[2-(1-azirinyl)]uracil analogues (10b,c). The 5-(1-azidovinyl)uracil derivatives 9a-c were found to exhibit potent and selective in vitro anti-HBV activity against duck hepatitis B virus (DHBV) infected primary duck hepatocytes at low concentrations (EC(50) = 0.01-0.1 microg/mL range). The most active anti-DHBV agent (9c), possessing a [4-hydroxy-3-(hydroxymethyl)-1-butyl] substituent at N-1, exhibited an activity (EC(50) of 0.01-0.05 microg/mL) comparable to that of reference compound (-)-beta-L-2',3'-dideoxy-3'-thiacytidine (3-TC) (EC(50) = 0.01-0.05 microg/mL). In contrast, related 5-[2-(1-azirinyl)]uracil analogues (10b,c) were devoid of anti-DHBV activity, indicating that an acyclic side chain at C-5 position of the pyrimidine ring is essential for anti-HBV activity. The pyrimidine nucleosides (9a-c, 10b,c) exhibited no cytotoxic activity against a panel of 60 human cancer cell lines. All of the compounds investigated did not show any detectable toxicity to several stationary and proliferating host cell lines or to mitogen stimulated proliferating human T lymphocytes, up to the highest concentration tested.

Knowledge Graph

Similar Paper

Design and Synthesis of Novel 5-Substituted Acyclic Pyrimidine Nucleosides as Potent and Selective Inhibitors of Hepatitis B Virus
Journal of Medicinal Chemistry 2002.0
Synthesis and Antiviral Activity of Novel Acyclic Nucleoside Analogues of 5-(1-Azido-2-haloethyl)uracils
Journal of Medicinal Chemistry 2001.0
Novel 5-Vinyl Pyrimidine Nucleosides with Potent anti-Hepatitis B Virus Activity
Bioorganic & Medicinal Chemistry Letters 2001.0
Inhibition of Hepatitis B Virus (HBV) Replication by Pyrimidines Bearing an Acyclic Moiety:  Effect on Wild-Type and Mutant HBV
Journal of Medicinal Chemistry 2006.0
Effect of Various Pyrimidines Possessing the 1-[(2-Hydroxy-1-(hydroxymethyl)ethoxy)methyl] Moiety, Able To Mimic Natural 2‘-Deoxyribose, on Wild-type and Mutant Hepatitis B Virus Replication
Journal of Medicinal Chemistry 2006.0
Antiviral activity of 2,3′-anhydro and related pyrimidine nucleosides against hepatitis B virus
Bioorganic & Medicinal Chemistry Letters 2010.0
Synthesis and Antiviral Activity of Novel 5-(1-Cyanamido-2-haloethyl) and 5-(1-Hydroxy(or methoxy)-2-azidoethyl) Analogues of Uracil Nucleosides
Journal of Medicinal Chemistry 2001.0
A new class of pyrimidine nucleosides: inhibitors of hepatitis B and C viruses
Bioorganic & Medicinal Chemistry Letters 2012.0
4′-Substituted pyrimidine nucleosides lacking 5′-hydroxyl function as potential anti-HCV agents
Bioorganic & Medicinal Chemistry Letters 2014.0
Nucleic acid related compounds. 47. Synthesis and biological activities of pyrimidine and purine "acyclic" nucleoside analogs
Journal of Medicinal Chemistry 1984.0