Novel Selective Phosphodiesterase (PDE4) Inhibitors. 4. Resolution, Absolute Configuration, and PDE4 Inhibitory Activity of cis-Tetra- and cis-Hexahydrophthalazinones

Journal of Medicinal Chemistry
2002.0

Abstract

Recently, we reported that 4-catechol-substituted cis-(+/-)-4a,5,6,7,8,8a-hexa- and cis-(+/-)-4a,5,8,8a-tetrahydro-2H-phthalazin-1-ones show potent inhibition of phosphodiesterase (PDE4) activity, while the corresponding trans racemic mixtures exhibit only weak to moderate activity. To determine the absolute configuration and PDE4 inhibitory activity of the individual cis-enantiomers, several optically active phthalazinones have been synthesized. The enantiomers of the various gamma-keto acids, used as starting materials, were resolved in a classical way by the formation of diastereomeric salts, and each was converted to optically active phthalazinone in an enantioselective manner. The absolute configuration of the (+)-enantiomer of cis-hexahydrophthalazinone (+)-12 was determined by X-ray crystallography. The carbon atoms at the 4a and 8a positions were found to have the S- and R-configuration, respectively. In the present series of hexa- and tetrahydrophthalazinones, stereoselectivity for PDE4 inhibition is observed; the cis-(+)-enantiomers of the phthalazinones display high inhibitory activity, whereas their (-)-counterparts exhibit only weak to moderate activity. It is likely that all cis-(+)-phthalazinones have a (4aS,8aR)-configuration and vice versa for the cis-(-)-analogues. In the current series, the N-adamantan-2-yl analogue (+)-14 shows the most potent inhibition of PDE4 (pIC(50) = 9.3); the corresponding (-)-enantiomer is 250-fold less active. In addition, the N-substituted tetrahydrophthalazinones under study were investigated for their in vivo antiinflammatory activities by examining the suppression of arachidonic acid (AA) induced mouse ear edema formation. In this assay analogues (+)-14 and (+)-15 were found to be potent antiinflammatory agents showing about 50% inhibition at 30 micromol/kg po.

Knowledge Graph

Similar Paper

Novel Selective Phosphodiesterase (PDE4) Inhibitors. 4. Resolution, Absolute Configuration, and PDE4 Inhibitory Activity of cis-Tetra- and cis-Hexahydrophthalazinones
Journal of Medicinal Chemistry 2002.0
Novel Selective PDE4 Inhibitors. 2. Synthesis and Structure−Activity Relationships of 4-Aryl-Substituted cis-Tetra- and cis-Hexahydrophthalazinones
Journal of Medicinal Chemistry 2001.0
Novel Selective PDE4 Inhibitors. 3. In Vivo Antiinflammatory Activity of a New Series of N-Substituted cis-Tetra- and cis-Hexahydrophthalazinones
Journal of Medicinal Chemistry 2002.0
Design, Synthesis, and Structure−Activity Relationship, Molecular Modeling, and NMR Studies of a Series of Phenyl Alkyl Ketones as Highly Potent and Selective Phosphodiesterase-4 Inhibitors
Journal of Medicinal Chemistry 2008.0
Phthalazine PDE4 inhibitors. Part 3: The synthesis and in vitro evaluation of derivatives with a hydrogen bond acceptor
Bioorganic & Medicinal Chemistry Letters 2002.0
Phthalazine PDE4 inhibitors. Part 2: The synthesis and biological evaluation of 6-methoxy-1,4-disubstituted derivatives
Bioorganic & Medicinal Chemistry Letters 2001.0
Design and synthesis of 4,5,6,7‐tetrahydro‐1 H ‐1,2‐diazepin‐7‐one derivatives as a new series of Phosphodiesterase 4 (PDE4) inhibitors
Bioorganic & Medicinal Chemistry Letters 2017.0
Synthesis and structure–activity relationships of 4-oxo-1-phenyl-3,4,6,7-tetrahydro-[1,4]diazepino[6,7,1- hi ]indoles: novel PDE4 inhibitors
Bioorganic & Medicinal Chemistry Letters 2000.0
Development of highly potent phosphodiesterase 4 inhibitors with anti-neuroinflammation potential: Design, synthesis, and structure-activity relationship study of catecholamides bearing aromatic rings
European Journal of Medicinal Chemistry 2016.0
Synthesis, Structure−Activity Relationships, and Pharmacological Profile of 9-Amino-4-oxo-1-phenyl-3,4,6,7-tetrahydro[1,4]diazepino[6,7,1-hi]indoles:  Discovery of Potent, Selective Phosphodiesterase Type 4 Inhibitors
Journal of Medicinal Chemistry 2000.0