Antitumor Agents. 1. Synthesis, Biological Evaluation, and Molecular Modeling of 5H-Pyrido[3,2-a]phenoxazin-5-one, a Compound with Potent Antiproliferative Activity

Journal of Medicinal Chemistry
2002.0

Abstract

The iminoquinone is an important moiety of a large number of antineoplastic drugs and plays a significant role in the nucleus of actinomycins, powerful, highly toxic, natural antibiotics that target DNA as intercalating agents. A series of polycyclic iminoquinonic compounds, 2-amino-3H-phenoxazin-3-one (1), 2-amino-1,9-diacetyl-3H-phenoxazin-3-one (2), 2-acetylamino-3H-phenoxazin-3-one (3), 3H-phenoxazin-3-one (4), 5H-pyrido[3,2-a]phenoxazin-5-one (5), and 5H-pyrido[3,2-a]phenothiazin-5-one (6), strictly related to the actinomycin chromophore, were synthesized for developing new anticancer intercalating drugs. The antiproliferative activity of these compounds, evaluated against representative human liquid and solid neoplastic cell lines, showed that 5 and its isoster 6 were the most active compounds inhibiting cell proliferation in a submicromolar range. Compound 5 was also evaluated against KB subclones (KBMDR, KB7D, and KBV20C), which overexpress the MDR1/P-glycoprotein drug efflux pump responsible for drug resistance. All the above KB subclones did not show altered sensitivity to the antiproliferative activity of 5. UV-vis and (1)H NMR spectroscopy experiments support the phenoxazinone 5/DNA binding. Molecular mechanics methods were used to build a three-dimensional model of the 5/[d(GAAGCTTC)]2 complex. Electrostatic interactions between the hydrogen of the positively charged pyridine nitrogen of 5 and the negatively charged oxygen atoms (O4' and O5') of the cytosine C5 residue together with stacking forces contribute to the high antiproliferative activity. The metal(II)-assisted synthesis procedure of 5 is described, and the formation mechanism is proposed.

Knowledge Graph

Similar Paper

Antitumor Agents. 1. Synthesis, Biological Evaluation, and Molecular Modeling of 5H-Pyrido[3,2-a]phenoxazin-5-one, a Compound with Potent Antiproliferative Activity
Journal of Medicinal Chemistry 2002.0
Antitumor Agents. 2. Synthesis, Structure−Activity Relationships, and Biological Evaluation of Substituted 5H-Pyridophenoxazin-5-ones with Potent Antiproliferative Activity
Journal of Medicinal Chemistry 2002.0
Antitumor Agents. 5. Synthesis, Structure−Activity Relationships, and Biological Evaluation of Dimethyl-5H-pyridophenoxazin-5-ones, Tetrahydro-5H-benzopyridophenoxazin-5-ones, and 5H-Benzopyridophenoxazin-5-ones with Potent Antiproliferative Activity
Journal of Medicinal Chemistry 2006.0
Antitumor agents 7. Synthesis, antiproliferative activity and molecular modeling of new l-lysine-conjugated pyridophenoxazinones as potent DNA-binding ligands and topoisomerase IIα inhibitors
European Journal of Medicinal Chemistry 2020.0
Synthesis, antiproliferative activity and DNA binding properties of novel 5-Aminobenzimidazo[1,2-a]quinoline-6-carbonitriles
European Journal of Medicinal Chemistry 2014.0
Antitumor Agents. 3. Design, Synthesis, and Biological Evaluation of New Pyridoisoquinolindione and Dihydrothienoquinolindione Derivatives with Potent Cytotoxic Activity
Journal of Medicinal Chemistry 2004.0
Synthesis and biological evaluation of 6H-pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5(6H)-ones as antimitotic agents and inhibitors of tubulin polymerization
Bioorganic & Medicinal Chemistry 2014.0
Structure−Activity Relationships for Pyrido-, Imidazo-, Pyrazolo-, Pyrazino-, and Pyrrolophenazinecarboxamides as Topoisomerase-Targeted Anticancer Agents
Journal of Medicinal Chemistry 2002.0
A phenazine analog of actinomycin D
Journal of Medicinal Chemistry 1979.0
Quinazolinones–Phenylquinoxaline hybrids with unsaturation/saturation linkers as novel anti-proliferative agents
Bioorganic & Medicinal Chemistry Letters 2016.0