Antitumor Agents. 5. Synthesis, Structure−Activity Relationships, and Biological Evaluation of Dimethyl-5H-pyridophenoxazin-5-ones, Tetrahydro-5H-benzopyridophenoxazin-5-ones, and 5H-Benzopyridophenoxazin-5-ones with Potent Antiproliferative Activity

Journal of Medicinal Chemistry
2006.0

Abstract

New antiproliferative compounds, dimethyl-5H-pyrido[3,2-a]phenoxazin-5-ones (1-6), tetrahydro-5H-benzopyrido[2,3-j]phenoxazin-5-ones (7-9), and 5H-benzopyrido[3,2-a]phenoxazin-5-ones (10-12) were synthesized and evaluated against representative human neoplastic cell lines. Dimethyl derivatives 1-6 were more active against carcinoma than leukemia cell lines. The tetrahydrobenzo derivatives 7-9 were scarcely active, whereas the corresponding benzo derivatives 10-12 showed notable cytotoxicity against a majority of the tested cell lines. Molecular modeling studies indicated that the high potency of 10 and 11, the most cytotoxic compounds of the whole series, could be due to the position of the condensed benzene ring, which favors pi-pi stacking interactions with purine and pyrimidine bases in the DNA active site. Biological studies suggested that 10-12 have no effect on human topoisomerases I and II and that they induce arrest at the G2/M phase.

Knowledge Graph

Similar Paper

Antitumor Agents. 5. Synthesis, Structure−Activity Relationships, and Biological Evaluation of Dimethyl-5H-pyridophenoxazin-5-ones, Tetrahydro-5H-benzopyridophenoxazin-5-ones, and 5H-Benzopyridophenoxazin-5-ones with Potent Antiproliferative Activity
Journal of Medicinal Chemistry 2006.0
Antitumor Agents. 2. Synthesis, Structure−Activity Relationships, and Biological Evaluation of Substituted 5H-Pyridophenoxazin-5-ones with Potent Antiproliferative Activity
Journal of Medicinal Chemistry 2002.0
Benzothiopyranoindole-Based Antiproliferative Agents: Synthesis, Cytotoxicity, Nucleic Acids Interaction, and Topoisomerases Inhibition Properties
Journal of Medicinal Chemistry 2009.0
Antitumor Agents. 1. Synthesis, Biological Evaluation, and Molecular Modeling of 5H-Pyrido[3,2-a]phenoxazin-5-one, a Compound with Potent Antiproliferative Activity
Journal of Medicinal Chemistry 2002.0
Antitumor agents 7. Synthesis, antiproliferative activity and molecular modeling of new l-lysine-conjugated pyridophenoxazinones as potent DNA-binding ligands and topoisomerase IIα inhibitors
European Journal of Medicinal Chemistry 2020.0
Benzothiopyranoindole- and pyridothiopyranoindole-based antiproliferative agents targeting topoisomerases
European Journal of Medicinal Chemistry 2019.0
Synthesis and Antitumor Activity of 4-Aminomethylthioxanthenone and 5-Aminomethylbenzothiopyranoindazole Derivatives
Journal of Medicinal Chemistry 1998.0
Synthesis and anti-proliferative activity of a small library of 7-substituted 5H-pyrrole [1,2-a][3,1]benzoxazin-5-one derivatives
Bioorganic & Medicinal Chemistry Letters 2017.0
Design, synthesis and antitumour evaluation of pyrrolo[1,2-f]-phenanthridine and dibenzo[f,h]pyrrolo[1,2-b]isoquinoline derivatives
European Journal of Medicinal Chemistry 2020.0
Design and synthesis of novel 2,4-diaryl-5H-indeno[1,2-b]pyridine derivatives, and their evaluation of topoisomerase inhibitory activity and cytotoxicity
Bioorganic & Medicinal Chemistry 2015.0