Antitumor Imidazotetrazines. 41. Conjugation of the Antitumor Agents Mitozolomide and Temozolomide to Peptides and Lexitropsins Bearing DNA Major and Minor Groove-Binding Structural Motifs

Journal of Medicinal Chemistry
2002.0

Abstract

Carboxylic acids derived from the amido groups of the antitumor agents mitozolomide and temozolomide have been conjugated to simple amino acids and peptides by carbodiimide coupling. Solid-state peptide synthesis has been applied to link the acids to DNA major groove-binding peptidic motifs known to adopt alpha-helical conformations. Attachment of the acids to pyrrole and imidazole polyamidic lexitropsins gave a series of potential DNA minor groove-binding ligands. In vitro biological evaluation of a limited number of these novel conjugates failed to demonstrate any enhanced growth-inhibitory activity compared to the unconjugated drugs; sites of alkylation at tracts of multiple guanines were also unaffected. Attachment of additional residues at C-8 of the imidazotetrazines did not perturb the chemistry of activation of the bicyclic nucleus, and biological sequelae can be rationalized by invoking the liberation of a common, diffusible, reactive chemical intermediate, the methanediazonium ion.

Knowledge Graph

Similar Paper

Antitumor Imidazotetrazines. 41. Conjugation of the Antitumor Agents Mitozolomide and Temozolomide to Peptides and Lexitropsins Bearing DNA Major and Minor Groove-Binding Structural Motifs
Journal of Medicinal Chemistry 2002.0
Antitumor Imidazotetrazines. 32.1 Synthesis of Novel Imidazotetrazinones and Related Bicyclic Heterocycles To Probe the Mode of Action of the Antitumor Drug Temozolomide
Journal of Medicinal Chemistry 1995.0
Strategy for Imidazotetrazine Prodrugs with Anticancer Activity Independent of MGMT and MMR
ACS Medicinal Chemistry Letters 2012.0
Antitumor imidazo[5,1-d]-1,2,3,5-tetrazines: compounds modified at the 3-position overcome resistance in human glioblastoma cell lines
MedChemComm 2016.0
Antitumour imidazotetrazines. 1. Synthesis and chemistry of 8-carbamoyl-3-(2-chloroethyl)imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one, a novel broad-spectrum antitumor agent
Journal of Medicinal Chemistry 1984.0
Synthesis and Quantitative Structure–Activity Relationship of Imidazotetrazine Prodrugs with Activity Independent of O6-Methylguanine-DNA-methyltransferase, DNA Mismatch Repair, and p53
Journal of Medicinal Chemistry 2013.0
Synthesis and growth-inhibitory activities of imidazo[5,1-d]-1,2,3,5-tetrazine-8-carboxamides related to the anti-tumour drug temozolomide, with appended silicon, benzyl and heteromethyl groups at the 3-position
MedChemComm 2018.0
A New Class of Symmetric Bisbenzimidazole-Based DNA Minor Groove-Binding Agents Showing Antitumor Activity
Journal of Medicinal Chemistry 2001.0
Remarkable DNA binding affinity and potential anticancer activity of pyrrolo[2,1-c][1,4]benzodiazepine–naphthalimide conjugates linked through piperazine side-armed alkane spacers
Bioorganic & Medicinal Chemistry 2008.0
Imine/amide–imidazole conjugates derived from 5-amino-4-cyano- N 1-substituted benzyl imidazole: Microwave-assisted synthesis and anticancer activity via selective topoisomerase-II-α inhibition
Bioorganic & Medicinal Chemistry 2015.0