Synthesis and Quantitative Structure–Activity Relationship of Imidazotetrazine Prodrugs with Activity Independent of O6-Methylguanine-DNA-methyltransferase, DNA Mismatch Repair, and p53

Journal of Medicinal Chemistry
2013.0

Abstract

The antitumor prodrug temozolomide is compromised by its dependence for activity on DNA mismatch repair (MMR) and the repair of the chemosensitive DNA lesion, O6-methylguanine (O6-MeG), by O6-methylguanine-DNA-methyltransferase (E.C. 2.1.1.63, MGMT). Tumor response is also dependent on wild-type p53. Novel 3-(2-anilinoethyl)-substituted imidazotetrazines are reported that have activity independent of MGMT, MMR, and p53. This is achieved through a switch of mechanism so that bioactivity derives from imidazotetrazine-generated arylaziridinium ions that principally modify guanine-N7 sites on DNA. Mono- and bifunctional analogues are reported, and a quantitative structure-activity relationship (QSAR) study identified the p-tolyl-substituted bifunctional congener as optimized for potency, MGMT-independence, and MMR-independence. NCI60 data show the tumor cell response is distinct from other imidazotetrazines and DNA-guanine-N7 active agents such as nitrogen mustards and cisplatin. The new imidazotetrazine compounds are promising agents for further development, and their improved in vitro activity validates the principles on which they were designed.

Knowledge Graph

Similar Paper

Synthesis and Quantitative Structure–Activity Relationship of Imidazotetrazine Prodrugs with Activity Independent of O6-Methylguanine-DNA-methyltransferase, DNA Mismatch Repair, and p53
Journal of Medicinal Chemistry 2013.0
Strategy for Imidazotetrazine Prodrugs with Anticancer Activity Independent of MGMT and MMR
ACS Medicinal Chemistry Letters 2012.0
Antitumor imidazo[5,1-d]-1,2,3,5-tetrazines: compounds modified at the 3-position overcome resistance in human glioblastoma cell lines
MedChemComm 2016.0
Antitumor Imidazotetrazines. 32.1 Synthesis of Novel Imidazotetrazinones and Related Bicyclic Heterocycles To Probe the Mode of Action of the Antitumor Drug Temozolomide
Journal of Medicinal Chemistry 1995.0
Synthesis and growth-inhibitory activities of imidazo[5,1-d]-1,2,3,5-tetrazine-8-carboxamides related to the anti-tumour drug temozolomide, with appended silicon, benzyl and heteromethyl groups at the 3-position
MedChemComm 2018.0
Synthesis and Antitumor Activity of Methyltriazene Prodrugs Simultaneously Releasing DNA-Methylating Agents and the Antiresistance Drug O<sup>6</sup>-Benzylguanine
Journal of Medicinal Chemistry 2004.0
Synthesis and antiproliferative activity of 3-(2-chloroethyl)-5-methyl-6-phenyl-8-(trifluoromethyl)-5,6-dihydropyrazolo[3,4-f][1,2,3,5]tetrazepin-4-(3H)-one
European Journal of Medicinal Chemistry 2015.0
Model studies towards prodrugs of the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) containing a diazo precursor
Bioorganic &amp; Medicinal Chemistry Letters 2021.0
Antitumor Imidazotetrazines. 41. Conjugation of the Antitumor Agents Mitozolomide and Temozolomide to Peptides and Lexitropsins Bearing DNA Major and Minor Groove-Binding Structural Motifs
Journal of Medicinal Chemistry 2002.0
Temozolomide analogs with improved brain/plasma ratios – Exploring the possibility of enhancing the therapeutic index of temozolomide
Bioorganic &amp; Medicinal Chemistry Letters 2016.0