Discovery of Substituted N-Phenyl Nicotinamides as Potent Inducers of Apoptosis Using a Cell- and Caspase-Based High Throughput Screening Assay

Journal of Medicinal Chemistry
2003.0

Abstract

By applying a novel cell- and caspase-based HTS assay, a series of N-phenyl nicotinamides has been identified as a new class of potent inducers of apoptosis. Through SAR studies, a 20-fold increase in potency was achieved from a screening hit N-(4-methoxy-2-nitrophenyl)pyridine-3-carboxamide (1) to lead compound 6-methyl-N-(4-ethoxy-2-nitrophenyl)pyridine-3-carboxamide (10), with an EC(50) of 0.082 microM in the caspase activation assay in T47D breast cancer cells. The N-phenyl nicotinamides also were found to be active in the growth inhibition assay where compound 10 had a GI(50) value of 0.21 microM in T47D cells. More importantly, compound 10 was found to be equipotent in MES-SA cells and paclitaxel-resistant, p-glycoprotein overexpressed MES-SA/DX5 cells. Compounds 1 and 6-chloro-N-(4-ethoxy-2-nitrophenyl)pyridine-3-carboxamide (8), a more potent analogue, were found to arrest T47D cells in G(2)/M phase of the cell cycle followed by induction of apoptosis as measured by flow cytometry. Compound 8, which was more potent than 1 in the caspase activation assay, also was found to be more potent in G(2)/M arrest and apoptosis assay. These data confirm that the cell-based caspase activation assay is useful for screening for inducers of apoptosis, as well as for SAR studies and lead optimization. Upon further characterization, N-phenyl nicotinamides were found to be inhibitors of microtubule polymerization in vitro. The identification of N-phenyl nicotinamides as a novel series of inducers of apoptosis demonstrates that our cell- and caspase-based HTS assay is useful for the discovery and optimization of potentially novel anticancer agents.

Knowledge Graph

Similar Paper

Discovery of Substituted N-Phenyl Nicotinamides as Potent Inducers of Apoptosis Using a Cell- and Caspase-Based High Throughput Screening Assay
Journal of Medicinal Chemistry 2003.0
Discovery of 4-Aryl-4H-chromenes as a New Series of Apoptosis Inducers Using a Cell- and Caspase-based High-Throughput Screening Assay. 1. Structure−Activity Relationships of the 4-Aryl Group
Journal of Medicinal Chemistry 2004.0
Discovery of substituted N′-(2-oxoindolin-3-ylidene)benzohydrazides as new apoptosis inducers using a cell- and caspase-based HTS assay
Bioorganic & Medicinal Chemistry Letters 2009.0
Discovery of 5-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-7-phenyl-(E)-2,3,6,7-tetrahydro-1,4-thiazepines as a new series of apoptosis inducers using a cell- and caspase-based HTS assay
Bioorganic & Medicinal Chemistry Letters 2007.0
Discovery of N-aryl-9-oxo-9H-fluorene-1-carboxamides as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure–activity relationships of the carboxamide group
Bioorganic & Medicinal Chemistry Letters 2009.0
Discovery of 4-anilino-N-methylthieno[3,2-d]pyrimidines and 4-anilino-N-methylthieno[2,3-d]pyrimidines as potent apoptosis inducers
Bioorganic & Medicinal Chemistry Letters 2009.0
Discovery of 1-benzoyl-3-cyanopyrrolo[1,2-a]quinolines as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2: Structure–activity relationships of the 4-, 5-, 6-, 7- and 8-positions
Bioorganic & Medicinal Chemistry Letters 2009.0
Discovery of 4-Aryl-4H-chromenes as a New Series of Apoptosis Inducers Using a Cell- and Caspase-Based High Throughput Screening Assay. 4. Structure–Activity Relationships of N-Alkyl Substituted Pyrrole Fused at the 7,8-Positions
Journal of Medicinal Chemistry 2008.0
Discovery and structure–activity relationships of (2-(arylthio)benzylideneamino)guanidines as a novel series of potent apoptosis inducers
Bioorganic & Medicinal Chemistry 2009.0
Discovery of N-aryl-9-oxo-9H-fluorene-1-carboxamides as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure–activity relationships of the 9-oxo-9H-fluorene ring
Bioorganic & Medicinal Chemistry Letters 2010.0