Discovery of 4-Aryl-4H-chromenes as a New Series of Apoptosis Inducers Using a Cell- and Caspase-Based High Throughput Screening Assay. 4. Structure–Activity Relationships of N-Alkyl Substituted Pyrrole Fused at the 7,8-Positions

Journal of Medicinal Chemistry
2008.0

Abstract

In our continuing effort to discover and develop apoptosis inducing 4-aryl-4H-chromenes as novel anticancer agents, we explored the structure-activity relationship (SAR) of alkyl substituted pyrrole fused at the 7,8-positions. A methyl group substituted at the nitrogen in the 7-position of the pyrrole ring led to a series of potent apoptosis inducers with potency in the low nanomolar range. These compounds were also found to be low nanomolar or subnanomolar inhibitors of cell growth, and they inhibited tubulin polymerization, indicating that methylation of the 7-position nitrogen does not change the mechanism of action of these chromenes. Compound 2d was identified as a highly potent apoptosis inducer with an EC50 value of 2 nM and a highly potent inhibitor of cell growth with a GI50 value of 0.3 nM in T47D cells.

Knowledge Graph

Similar Paper

Discovery of 4-Aryl-4H-chromenes as a New Series of Apoptosis Inducers Using a Cell- and Caspase-Based High Throughput Screening Assay. 4. Structure–Activity Relationships of N-Alkyl Substituted Pyrrole Fused at the 7,8-Positions
Journal of Medicinal Chemistry 2008.0
Discovery of 4-Aryl-4H-chromenes as a New Series of Apoptosis Inducers Using a Cell- and Caspase-based High-Throughput Screening Assay. 1. Structure−Activity Relationships of the 4-Aryl Group
Journal of Medicinal Chemistry 2004.0
Discovery of 1-benzoyl-3-cyanopyrrolo[1,2-a]quinolines as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2: Structure–activity relationships of the 4-, 5-, 6-, 7- and 8-positions
Bioorganic & Medicinal Chemistry Letters 2009.0
Discovery of 5-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-7-phenyl-(E)-2,3,6,7-tetrahydro-1,4-thiazepines as a new series of apoptosis inducers using a cell- and caspase-based HTS assay
Bioorganic & Medicinal Chemistry Letters 2007.0
Discovery of Substituted N-Phenyl Nicotinamides as Potent Inducers of Apoptosis Using a Cell- and Caspase-Based High Throughput Screening Assay
Journal of Medicinal Chemistry 2003.0
Discovery of 4-anilino-N-methylthieno[3,2-d]pyrimidines and 4-anilino-N-methylthieno[2,3-d]pyrimidines as potent apoptosis inducers
Bioorganic & Medicinal Chemistry Letters 2009.0
Discovery of substituted N′-(2-oxoindolin-3-ylidene)benzohydrazides as new apoptosis inducers using a cell- and caspase-based HTS assay
Bioorganic & Medicinal Chemistry Letters 2009.0
Discovery of N-aryl-9-oxo-9H-fluorene-1-carboxamides as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure–activity relationships of the carboxamide group
Bioorganic & Medicinal Chemistry Letters 2009.0
Discovery of N-aryl-9-oxo-9H-fluorene-1-carboxamides as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure–activity relationships of the 9-oxo-9H-fluorene ring
Bioorganic & Medicinal Chemistry Letters 2010.0
Synthesis, structure activity relationship and mode of action of 3-substitutedphenyl-1-(2,2,8,8-tetramethyl-3,4,9,10-tetrahydro-2 H ,8 H -pyrano[2,3- f ]chromen-6-yl)-propenones as novel anticancer agents in human leukaemia HL-60 cells
European Journal of Medicinal Chemistry 2013.0