Further Studies on 2,4-Diamino-5-(2‘,5‘-disubstituted benzyl)pyrimidines as Potent and Selective Inhibitors of Dihydrofolate Reductases from Three Major Opportunistic Pathogens of AIDS

Journal of Medicinal Chemistry
2003.0

Abstract

As part of an ongoing effort to discover novel small-molecule antifolates combining the enzyme-binding species selectivity of trimethoprim (TMP) with the potency of piritrexim (PTX), 10 previously unreported 2,4-diamino-5-(2'-methoxy-5'-substituted)benzylpyrimidines (2-11) containing a carboxyl group at the distal end of the 5'-substituent were synthesized and tested as inhibitors of dihydrofolate reductase (DHFR) from Pneumocystis carinii (Pc), Toxoplasma gondii (Tg), and Mycobacterium avium (Ma), three of the opportunistic pathogens frequently responsible for life-threatening illness in people with impaired immune systems as a result of HIV infection or immunosuppressive chemotherapy. The selectivity index of DHFR inhibition was evaluated by comparing the potency of each compound against the parasite enzymes with its potency against rat liver DHFR. 2,4-Diamino-5-[5'-(5-carboxy-1-pentynyl)-2'-methoxybenzyl]pyrimidine (3) inhibited Pc DHFR with a selectivity index of 79 and was 430 times more potent than TMP. 2,4-Diamino-5-[5'-(4-carboxy-1-butynyl)-2'-methoxybenzyl]pyrimidine (2), with one less carbon than 3 in the side chain, had a selectivity index of 910 against Ma DHFR and was 43 times more potent than TMP. 2,4-Diamino-5-[5'-(5-carboxypentyl)-2'-methoxybenzyl]pyrimidine (6) had a selectivity index of 490 against Tg DHFR and was 320 times more potent than TMP. 2,4-Diamino-5-[5'-(6-carboxy-1-hexynyl)-2'-methoxybenzyl]pyrimidine (4), with one more carbon than 3, was less potent against all three of the parasite enzymes than either 3 or 6 and also had a lower selectivity index than 3 against the Pc enzyme. However, 4 was the only member of the series with a selectivity index of >300 against both Tg and Ma DHFR. Given that PTX is at least 10 times more potent against rat DHFR than against P. carinii or T. gondii DHFR and that the selectivity index of several of the compounds matches or exceeds that of TMP as well as PTX, our results suggest that it may be possible to develop clinically useful nonclassical antifolates that are both potent and selective against the major opportunistic pathogens of AIDS.

Knowledge Graph

Similar Paper

Further Studies on 2,4-Diamino-5-(2‘,5‘-disubstituted benzyl)pyrimidines as Potent and Selective Inhibitors of Dihydrofolate Reductases from Three Major Opportunistic Pathogens of AIDS
Journal of Medicinal Chemistry 2003.0
New 2,4-Diamino-5-(2‘,5‘-substituted benzyl)pyrimidines as Potential Drugs against Opportunistic Infections of AIDS and Other Immune Disorders. Synthesis and Species-Dependent Antifolate Activity
Journal of Medicinal Chemistry 2004.0
Inhibition of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium Dihydrofolate Reductases by 2,4-Diamino-5-[2-methoxy-5-(ω-carboxyalkyloxy)benzyl]pyrimidines:  Marked Improvement in Potency Relative to Trimethoprim and Species Selectivity Relative to Piritrexim
Journal of Medicinal Chemistry 2002.0
Design, Synthesis, and Antifolate Activity of New Analogues of Piritrexim and Other Diaminopyrimidine Dihydrofolate Reductase Inhibitors with ω-Carboxyalkoxy or ω-Carboxy-1-alkynyl Substitution in the Side Chain
Journal of Medicinal Chemistry 2005.0
2,4-Diaminopyrido[3,2-d]pyrimidine Inhibitors of Dihydrofolate Reductase from Pneumocystis carinii and Toxoplasma gondii
Journal of Medicinal Chemistry 1995.0
Synthesis of 2,4-Diamino-6-[2‘-O-(ω-carboxyalkyl)oxydibenz[b,f]azepin-5-yl]methylpteridines as Potent and Selective Inhibitors of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium Dihydrofolate Reductase
Journal of Medicinal Chemistry 2004.0
Synthesis and Biological Evaluation of 2,4-Diamino-6-(arylaminomethyl)pyrido[2,3-d]pyrimidines as Inhibitors of Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase and as Antiopportunistic Infection and Antitumor Agents
Journal of Medicinal Chemistry 2003.0
Nonclassical 2,4-Diamino-5-aryl-6-ethylpyrimidine Antifolates:  Activity as Inhibitors of Dihydrofolate Reductase from Pneumocystis carinii and Toxoplasma gondii and as Antitumor Agents
Journal of Medicinal Chemistry 1997.0
Nonclassical 2,4-Diamino-8-deazafolate Analogues as Inhibitors of Dihydrofolate Reductases from Rat Liver, Pneumocystis carinii, and Toxoplasma gondii
Journal of Medicinal Chemistry 1996.0
Synthesis and Dihydrofolate Reductase Inhibitory Activities of 2,4-Diamino-5-deaza and 2,4-Diamino-5,10-dideaza Lipophilic Antifolates
Journal of Medicinal Chemistry 1997.0