Structure−Activity Relationships at Monoamine Transporters for a Series of N-Substituted 3α-(Bis[4-fluorophenyl]methoxy)tropanes:  Comparative Molecular Field Analysis, Synthesis, and Pharmacological Evaluation

Journal of Medicinal Chemistry
2004.0

Abstract

The development of structure-activity relationships (SAR) with divergent classes of monoamine transporter ligands and comparison of their effects in animal models of cocaine abuse have provided insight into the complex relationship among structure, binding profiles, and behavioral activity. Many 3alpha-(diphenylmethoxy)tropane (benztropine) analogues are potent dopamine uptake inhibitors but exhibit behavioral profiles that differ from those of cocaine and other compounds in this class. One of the most potent and dopamine transporter (DAT) selective N-substituted benztropine analogues (N-(4-phenyl-n-butyl)-3alpha-(bis[4-fluorophenyl]methoxy)tropane, 1c) is devoid of cocaine-like behaviors in rodent models but is also highly lipophilic (cLogD = 5.01), which compromises its water solubility and may adversely affect its pharmacokinetic properties. To further explore the SAR in this series and ultimately to design dopamine uptake inhibitors with favorable lipophilicities for drug development, a comparative molecular field analysis (CoMFA) was performed on a set of benztropine analogues previously synthesized in our laboratory. The CoMFA field analysis on the statistically significant (r2(cv) = 0.632; r2(ncv) = 0.917) models provided valuable insight into the structural features required for optimal binding to the DAT, which was used to design a series of novel benztropine analogues with heteroatom substitutions at the tropane N-8. These compounds were evaluated for binding at DAT, serotonin (SERT) and norepinephrine (NET) transporters, and muscarinic M1 receptors in rat brain. Inhibition of [3H]DA uptake in synaptosomes was also evaluated. Most of the analogues showed high DAT affinity (12-50 nM), selectivity (10- to 120-fold), potent inhibition of dopamine uptake, and lower lipophilicities as predicted by cLogD values.

Knowledge Graph

Similar Paper

Structure−Activity Relationships at Monoamine Transporters for a Series of N-Substituted 3α-(Bis[4-fluorophenyl]methoxy)tropanes:  Comparative Molecular Field Analysis, Synthesis, and Pharmacological Evaluation
Journal of Medicinal Chemistry 2004.0
Structure−Activity Relationship Studies on a Novel Series of (S)-2β-Substituted 3α-[Bis(4-fluoro- or 4-chlorophenyl)methoxy]tropane Analogues for in Vivo Investigation
Journal of Medicinal Chemistry 2006.0
Structure−Activity Relationship Comparison of (S)-2β-Substituted 3α-(Bis[4-fluorophenyl]methoxy)tropanes and (R)-2β-Substituted 3β-(3,4-Dichlorophenyl)tropanes at the Dopamine Transporter
Journal of Medicinal Chemistry 2003.0
Synthesis, Dopamine Transporter Affinity, Dopamine Uptake Inhibition, and Locomotor Stimulant Activity of 2-Substituted 3β-Phenyltropane Derivatives
Journal of Medicinal Chemistry 1997.0
Novel 3.alpha.-(Diphenylmethoxy)tropane Analogs: Potent Dopamine Uptake Inhibitors without Cocaine-like Behavioral Profiles
Journal of Medicinal Chemistry 1994.0
3‘-Chloro-3α-(diphenylmethoxy)tropane But Not 4‘-Chloro-3α- (diphenylmethoxy)tropane Produces a Cocaine-like Behavioral Profile
Journal of Medicinal Chemistry 1997.0
Synthesis, Structure, Dopamine Transporter Affinity, and Dopamine Uptake Inhibition of 6-Alkyl-3-benzyl-2-[(methoxycarbonyl)methyl]tropane Derivatives
Journal of Medicinal Chemistry 1997.0
Novel 4'-Substituted and 4',4''-Disubstituted 3.alpha.-(Diphenylmethoxy)tropane Analogs as Potent and Selective Dopamine Uptake Inhibitors
Journal of Medicinal Chemistry 1995.0
Synthesis and Biological Evaluation of 2-Substituted 3β-Tolyltropane Derivatives at Dopamine, Serotonin, and Norepinephrine Transporters
Journal of Medicinal Chemistry 2002.0
Synthesis and structure–activity relationship of 3β-(4-alkylthio, -methylsulfinyl, and -methylsulfonylphenyl)tropane and 3β-(4-alkylthiophenyl)nortropane derivatives for monoamine transporters
Bioorganic & Medicinal Chemistry 2009.0