Further Structurally Constrained Analogues of cis-(6-Benzhydrylpiperidin-3-yl)benzylamine with Elucidation of Bioactive Conformation:  Discovery of 1,4-Diazabicyclo[3.3.1]nonane Derivatives and Evaluation of Their Biological Properties for the Monoamine Transporters

Journal of Medicinal Chemistry
2004.0

Abstract

Our structure-activity relationship (SAR) study on piperidine analogues for monoamine transporters led to the development of a series of 3,6-disubstituted piperidine derivatives, structurally constrained versions of flexible piperidine analogues, with preferential affinity for the dopamine transporter (DAT). In our attempt to further rigidify this structure to study influence of rigidity on binding and in vivo activity, we have developed a series of 4,8-disubstituted 1,4-diazabicyclo[3.3.1]nonane derivatives. All synthesized derivatives were tested for their affinity at the DAT, serotonin transporter (SERT), and norepinephrine transporter (NET) in the brain by measuring their potency in competing for the binding of [(3)H]WIN 35, 428, [(3)H]citalopram, and [(3)H]nisoxetine, respectively. Selected compounds were also tested for their ability to inhibit uptake of [(3)H]DA. The SAR study led to the discovery of a potent lead compound (-)-S,S-10c which exhibited high affinity and selectivity for the DAT (IC(50) = 22.5 nM; SERT/DAT = 384 and NET/DAT > 444). It is interesting to note that both (-)-10c and the lead compound from the 3,6-disubstituted series (-)-2 exhibited highest activity in their (S,S) isomer indicating similar requirement of regiospecificity for maximum interaction. Overall, our current SAR results corresponded well with the results from less constrained 3,6-disubstituted versions of these molecules albeit the former class exhibited more stringent requirement in molecular structure for activity. However, the potent compounds in the current series exhibited greater selectivity for the DAT compared to their corresponding lesser constrained 3,6-disubstituted versions indicating an effect of rigidity in selective interaction with the transporter proteins. In an effort to elucidate the bioactive conformational structure of the lead molecules in the current and the 3,6-disubstituted series, a preliminary molecular modeling study was carried out where the most rigid derivative (-)-10c was used as a template structure. Compounds (-)-2 and (-)-10c exhibited stimulant activity in locomotor tests in mice in which (-)-2 exhibited a slower onset and longer duration of action compared to (-)-10c. Both compounds occasioned complete cocaine-like responding in mice trained to discriminate 10 mg/kg ip cocaine from vehicle.

Knowledge Graph

Similar Paper

Further Structurally Constrained Analogues of cis-(6-Benzhydrylpiperidin-3-yl)benzylamine with Elucidation of Bioactive Conformation:  Discovery of 1,4-Diazabicyclo[3.3.1]nonane Derivatives and Evaluation of Their Biological Properties for the Monoamine Transporters
Journal of Medicinal Chemistry 2004.0
Interaction of cis-(6-Benzhydrylpiperidin-3-yl)benzylamine Analogues with Monoamine Transporters:  Structure−Activity Relationship Study of Structurally Constrained 3,6-Disubstituted Piperidine Analogues of (2,2-Diphenylethyl)-[1-(4-fluorobenzyl)piperidin-4-ylmethyl]amine
Journal of Medicinal Chemistry 2003.0
Structure−Activity Relationship Studies of 4-[2-(Diphenylmethoxy)ethyl]-1-benzylpiperidine Derivatives and Their N-Analogues:  Evaluation of Behavioral Activity of O- and N-Analogues and Their Binding to Monoamine Transporters
Journal of Medicinal Chemistry 2001.0
Expansion of Structure−Activity Studies of Piperidine Analogues of 1-[2-(Diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine (GBR 12935) Compounds by Altering Substitutions in the N-Benzyl Moiety and Behavioral Pharmacology of Selected Molecules
Journal of Medicinal Chemistry 2002.0
Further SAR Studies of Piperidine-Based Analogues of Cocaine. 2. Potent Dopamine and Serotonin Reuptake Inhibitors
Journal of Medicinal Chemistry 2000.0
Synthesis and Dopamine Transporter Affinity of 2-(Methoxycarbonyl)-9-methyl-3-phenyl-9-azabicyclo[3.3.1]nonane Derivatives
Journal of Medicinal Chemistry 1996.0
Synthesis, Molecular Modeling, and Biological Studies of Novel Piperidine-Based Analogues of Cocaine:  Evidence of Unfavorable Interactions Proximal to the 3α-Position of the Piperidine Ring
Journal of Medicinal Chemistry 2004.0
Design, synthesis, and activity of novel cis- and trans-3,6-disubstituted pyran biomimetics of 3,6-disubstituted piperidine as potential ligands for the dopamine transporter
Bioorganic & Medicinal Chemistry Letters 2003.0
Design, Synthesis, and Biological Evaluation of Novel Non-Piperazine Analogues of 1-[2-(Diphenylmethoxy)ethyl]- and 1-[2-[Bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazines as Dopamine Transporter Inhibitors
Journal of Medicinal Chemistry 1999.0
Chemistry and Pharmacology of the Piperidine-Based Analogues of Cocaine. Identification of Potent DAT Inhibitors Lacking the Tropane Skeleton
Journal of Medicinal Chemistry 1998.0