Three-Dimensional Quantitative Structure−Activity Relationship Analyses of β-Lactam Antibiotics and Tripeptides as Substrates of the Mammalian H+/Peptide Cotransporter PEPT1

Journal of Medicinal Chemistry
2005.0

Abstract

The utilization of the membrane transport protein PEPT1 as a drug delivery system is a promising strategy to enhance the oral bioavailability of drugs. Since very little is known about the substrate binding site of PEPT1, computational methods are a meaningful tool to gain a more detailed insight into the structural requirements for substrates. Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) method were performed on a training set of 98 compounds. Affinity constants of beta-lactam antibiotics and tripeptides were determined at Caco-2 cells. A statistically reliable model of high predictive power was obtained (q(2) = 0.828, r(2) = 0.937). The results derived from CoMSIA were graphically interpreted using different field contribution maps. We identified those regions which are crucial for the interaction between peptidomimetics and PEPT1. The new 3D-QSAR model was used to design a new druglike compound mimicking a dipeptide. The predicted K(i) value was confirmed experimentally.

Knowledge Graph

Similar Paper

Three-Dimensional Quantitative Structure−Activity Relationship Analyses of β-Lactam Antibiotics and Tripeptides as Substrates of the Mammalian H<sup>+</sup>/Peptide Cotransporter PEPT1
Journal of Medicinal Chemistry 2005.0
Three-Dimensional Quantitative Structure−Activity Relationship Analyses of Peptide Substrates of the Mammalian H<sup>+</sup>/Peptide Cotransporter PEPT1
Journal of Medicinal Chemistry 2003.0
Structural Requirements for the Substrates of the H<sup>+</sup>/Peptide Cotransporter PEPT2 Determined by Three-Dimensional Quantitative Structure−Activity Relationship Analysis
Journal of Medicinal Chemistry 2006.0
Three-dimensional quantitative structure–activity relationship analyses of substrates of the human proton-coupled amino acid transporter 1 (hPAT1)
Bioorganic &amp; Medicinal Chemistry 2011.0
CoMFA and CoMSIA analysis of ACE-inhibitory, antimicrobial and bitter-tasting peptides
European Journal of Medicinal Chemistry 2014.0
Structural requirements for determining the substrate affinity of peptide transporters PEPT1 and PEPT2
Pflügers Archiv - European Journal of Physiology 2000.0
3-D-QSAR and docking studies on the neuronal choline transporter
Bioorganic &amp; Medicinal Chemistry Letters 2010.0
Interaction of 31 β-lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1
European Journal of Pharmaceutics and Biopharmaceutics 2005.0
Recognition of β-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK<sub>1</sub>cells
American Journal of Physiology-Renal Physiology 1997.0
Molecular modeling studies on the active binding site of the blood–brain barrier choline transporter
Bioorganic &amp; Medicinal Chemistry Letters 2004.0