Novel Pyridyl Ring C5 Substituted Analogues of Epibatidine and 3-(1-Methyl-2(S)- pyrrolidinylmethoxy)pyridine (A-84543) as Highly Selective Agents for Neuronal Nicotinic Acetylcholine Receptors Containing β2 Subunits

Journal of Medicinal Chemistry
2005.0

Abstract

Introduction of a hydrophobic or hydrogen-bonding alkynyl group into the C5 position of the pyridyl ring of epibatidine and A-84543 significantly increased the selectivity for neuronal nicotinic acetylcholine receptors (nAChRs) containing beta2 subunits over nAChRs containing beta4 subunits (K(i) ratio up to 92000-fold). Our data indicate that the extracellular domains of the nAChRs are sufficiently different to allow for the design of novel ligands with high affinity and selectivity for the nAChR subtypes.

Knowledge Graph

Similar Paper

Novel Pyridyl Ring C5 Substituted Analogues of Epibatidine and 3-(1-Methyl-2(S)- pyrrolidinylmethoxy)pyridine (A-84543) as Highly Selective Agents for Neuronal Nicotinic Acetylcholine Receptors Containing β2 Subunits
Journal of Medicinal Chemistry 2005.0
Epibatidine analogues as selective ligands for the αxβ2-containing subtypes of nicotinic acetylcholine receptors
Bioorganic & Medicinal Chemistry Letters 2005.0
Synthesis and structure-activity relationships of pyridine-modified analogs of 3-[2-((S)-pyrrolidinyl)methoxy]pyridine, A-84543, a potent nicotinic acetylcholine receptor agonist
Bioorganic & Medicinal Chemistry Letters 1998.0
Synthesis, Nicotinic Acetylcholine Receptor Binding Affinities, and Molecular Modeling of Constrained Epibatidine Analogues
Journal of Medicinal Chemistry 2003.0
Octahydropyrrolo[3,4-c]pyrrole: A Diamine Scaffold for Construction of Either α4β2 or α7-Selective Nicotinic Acetylcholine Receptor (nAChR) Ligands. Substitutions that Switch Subtype Selectivity
Journal of Medicinal Chemistry 2009.0
Structure–activity relationships of N-substituted ligands for the α7 nicotinic acetylcholine receptor
Bioorganic & Medicinal Chemistry Letters 2010.0
Novel 3-Pyridyl Ethers with Subnanomolar Affinity for Central Neuronal Nicotinic Acetylcholine Receptors
Journal of Medicinal Chemistry 1996.0
Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 2′-Fluoro-3′-(substituted pyridinyl)-7-deschloroepibatidine Analogues
Journal of Medicinal Chemistry 2014.0
Synthesis and binding affinity at α4β2 and α7 nicotinic acetylcholine receptors of new analogs of epibatidine and epiboxidine containing the 7-azabicyclo[2.2.1]hept-2-ene ring system
Bioorganic & Medicinal Chemistry Letters 2012.0
Modification of the anabaseine pyridine nucleus allows achieving binding and functional selectivity for the α3β4 nicotinic acetylcholine receptor subtype
European Journal of Medicinal Chemistry 2016.0