Novel 3-Pyridyl Ethers with Subnanomolar Affinity for Central Neuronal Nicotinic Acetylcholine Receptors

Journal of Medicinal Chemistry
1996.0

Abstract

Recent evidence indicating the therapeutic potential of cholinergic channel modulators for the treatment of central nervous system (CNS) disorders as well as the diversity of brain neuronal nicotine acetylcholine receptors (nAChRs) have suggested an opportunity to develop subtype-selective nAChR ligands for the treatment of specific CNS disorders with reduced side effect liabilities. We report a novel series of 3-pyridyl ether compounds which possess subnanomolar affinity for brain nAChRs and differentially activate subtypes of neuronal nAChRs. The synthesis and structure-activity relationships for the leading members of the series are described, including A-85380 (4a), which possesses ca.50 pM affinity for rat brain [(3)H]-(-)-cytisine binding sites and 163% efficacy compared to nicotine to stimulate ion flux at human alpha4beta2 nAChR subtype, and A-84543 (2a), which exhibits 84-fold selectivity to stimulate ion flux at human alpha4beta2 nAchR subtype compared to human ganglionic type nAChRs. Computational studies indicate that a reasonable superposition of a low energy conformer of 4A with (S)-nicotine and (-)-epibatidine can be achieved.

Knowledge Graph

Similar Paper

Novel 3-Pyridyl Ethers with Subnanomolar Affinity for Central Neuronal Nicotinic Acetylcholine Receptors
Journal of Medicinal Chemistry 1996.0
Synthesis and structure-activity relationships of pyridine-modified analogs of 3-[2-((S)-pyrrolidinyl)methoxy]pyridine, A-84543, a potent nicotinic acetylcholine receptor agonist
Bioorganic & Medicinal Chemistry Letters 1998.0
Synthesis and biological evaluation of novel carbon-11 labeled pyridyl ethers: candidate ligands for in vivo imaging of α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs) in the brain with positron emission tomography
Bioorganic & Medicinal Chemistry 2009.0
Novel Pyridyl Ring C5 Substituted Analogues of Epibatidine and 3-(1-Methyl-2(S)- pyrrolidinylmethoxy)pyridine (A-84543) as Highly Selective Agents for Neuronal Nicotinic Acetylcholine Receptors Containing β2 Subunits
Journal of Medicinal Chemistry 2005.0
Synthesis, Binding, and Modeling Studies of New Cytisine Derivatives, as Ligands for Neuronal Nicotinic Acetylcholine Receptor Subtypes
Journal of Medicinal Chemistry 2009.0
Novel 5-substituted 3-hydroxyphenyl and 3-nitrophenyl ethers of S -prolinol as α4β2-nicotinic acetylcholine receptor ligands
Bioorganic & Medicinal Chemistry Letters 2016.0
Structure–activity relationships of N-substituted ligands for the α7 nicotinic acetylcholine receptor
Bioorganic & Medicinal Chemistry Letters 2010.0
Discovery of benzamide analogs as negative allosteric modulators of human neuronal nicotinic receptors: Pharmacophore modeling and structure–activity relationship studies
Bioorganic & Medicinal Chemistry 2013.0
Pyridinyl- and pyridazinyl-3,6-diazabicyclo[3.1.1]heptane-anilines: Novel selective ligands with subnanomolar affinity for α4β2 nACh receptors
European Journal of Medicinal Chemistry 2018.0
Octahydropyrrolo[3,4-c]pyrrole: A Diamine Scaffold for Construction of Either α4β2 or α7-Selective Nicotinic Acetylcholine Receptor (nAChR) Ligands. Substitutions that Switch Subtype Selectivity
Journal of Medicinal Chemistry 2009.0