Novel Tacrine−Melatonin Hybrids as Dual-Acting Drugs for Alzheimer Disease, with Improved Acetylcholinesterase Inhibitory and Antioxidant Properties

Journal of Medicinal Chemistry
2006.0

Abstract

Tacrine and melatonin are well-known drugs with activities as an acetylcholinesterase (AChE) inhibitor and free radical scavenger, respectively. In this work, we report new hybrids of both drugs that display higher in vitro properties than the sum of their parts. As selective inhibitors of human AChE, their IC(50) values range from sub-nanomolar to picomolar. They exhibit a higher oxygen radical absorbance capacity than does melatonin and are predicted to be able to cross the blood-brain barrier to reach their targets in the central nervous system.

Knowledge Graph

Similar Paper

Novel Tacrine−Melatonin Hybrids as Dual-Acting Drugs for Alzheimer Disease, with Improved Acetylcholinesterase Inhibitory and Antioxidant Properties
Journal of Medicinal Chemistry 2006.0
Tacrine–Trolox Hybrids: A Novel Class of Centrally Active, Nonhepatotoxic Multi-Target-Directed Ligands Exerting Anticholinesterase and Antioxidant Activities with Low In Vivo Toxicity
Journal of Medicinal Chemistry 2015.0
Multifunctional tacrine–trolox hybrids for the treatment of Alzheimer's disease with cholinergic, antioxidant, neuroprotective and hepatoprotective properties
European Journal of Medicinal Chemistry 2015.0
Novel Tacrine−8-Hydroxyquinoline Hybrids as Multifunctional Agents for the Treatment of Alzheimer’s Disease, with Neuroprotective, Cholinergic, Antioxidant, and Copper-Complexing Properties
Journal of Medicinal Chemistry 2010.0
New Melatonin–N,N-Dibenzyl(N-methyl)amine Hybrids: Potent Neurogenic Agents with Antioxidant, Cholinergic, and Neuroprotective Properties as Innovative Drugs for Alzheimer’s Disease
Journal of Medicinal Chemistry 2014.0
Novel tacrine–ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity
Bioorganic & Medicinal Chemistry Letters 2013.0
New Tacrine–4-Oxo-4H-chromene Hybrids as Multifunctional Agents for the Treatment of Alzheimer’s Disease, with Cholinergic, Antioxidant, and β-Amyloid-Reducing Properties
Journal of Medicinal Chemistry 2012.0
Design, synthesis and bioevaluation of tacrine hybrids with cinnamate and cinnamylidene acetate derivatives as potential anti-Alzheimer drugs
MedChemComm 2015.0
Synthesis, biological evaluation and molecular modeling study of novel tacrine–carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2014.0
The Antioxidant Additive Approach for Alzheimer’s Disease Therapy: New Ferulic (Lipoic) Acid Plus Melatonin Modified Tacrines as Cholinesterases Inhibitors, Direct Antioxidants, and Nuclear Factor (Erythroid-Derived 2)-Like 2 Activators
Journal of Medicinal Chemistry 2016.0