The Antioxidant Additive Approach for Alzheimer’s Disease Therapy: New Ferulic (Lipoic) Acid Plus Melatonin Modified Tacrines as Cholinesterases Inhibitors, Direct Antioxidants, and Nuclear Factor (Erythroid-Derived 2)-Like 2 Activators

Journal of Medicinal Chemistry
2016.0

Abstract

Novel multifunctional tacrines for Alzheimer's disease were obtained by Ugi-reaction between ferulic (or lipoic acid), a melatonin-like isocyanide, formaldehyde, and tacrine derivatives, according to the antioxidant additive approach in order to modulate the oxidative stress as therapeutic strategy. Compound 5c has been identified as a promising permeable agent showing excellent antioxidant properties, strong cholinesterase inhibitory activity, less hepatotoxicity than tacrine, and the best neuroprotective capacity, being able to significantly activate the Nrf2 transcriptional pathway.

Knowledge Graph

Similar Paper

The Antioxidant Additive Approach for Alzheimer’s Disease Therapy: New Ferulic (Lipoic) Acid Plus Melatonin Modified Tacrines as Cholinesterases Inhibitors, Direct Antioxidants, and Nuclear Factor (Erythroid-Derived 2)-Like 2 Activators
Journal of Medicinal Chemistry 2016.0
Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD
Bioorganic & Medicinal Chemistry Letters 2015.0
Novel Tacrine−Melatonin Hybrids as Dual-Acting Drugs for Alzheimer Disease, with Improved Acetylcholinesterase Inhibitory and Antioxidant Properties
Journal of Medicinal Chemistry 2006.0
Design and synthesis of tacrine–ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates
Bioorganic & Medicinal Chemistry Letters 2008.0
Multifunctional tacrine–trolox hybrids for the treatment of Alzheimer's disease with cholinergic, antioxidant, neuroprotective and hepatoprotective properties
European Journal of Medicinal Chemistry 2015.0
Tacrine–Ferulic Acid–Nitric Oxide (NO) Donor Trihybrids as Potent, Multifunctional Acetyl- and Butyrylcholinesterase Inhibitors
Journal of Medicinal Chemistry 2012.0
Novel Tacrine−8-Hydroxyquinoline Hybrids as Multifunctional Agents for the Treatment of Alzheimer’s Disease, with Neuroprotective, Cholinergic, Antioxidant, and Copper-Complexing Properties
Journal of Medicinal Chemistry 2010.0
New Tacrine–4-Oxo-4H-chromene Hybrids as Multifunctional Agents for the Treatment of Alzheimer’s Disease, with Cholinergic, Antioxidant, and β-Amyloid-Reducing Properties
Journal of Medicinal Chemistry 2012.0
Tacrine–Trolox Hybrids: A Novel Class of Centrally Active, Nonhepatotoxic Multi-Target-Directed Ligands Exerting Anticholinesterase and Antioxidant Activities with Low In Vivo Toxicity
Journal of Medicinal Chemistry 2015.0
Design, synthesis and bioevaluation of tacrine hybrids with cinnamate and cinnamylidene acetate derivatives as potential anti-Alzheimer drugs
MedChemComm 2015.0