Dipyridyl Thiosemicarbazone Chelators with Potent and Selective Antitumor Activity Form Iron Complexes with Redox Activity

Journal of Medicinal Chemistry
2006.0

Abstract

There has been much interest in the development of iron (Fe) chelators for the treatment of cancer. We developed a series of di-2-pyridyl ketone thiosemicarbazone (HDpT) ligands which show marked and selective antitumor activity in vitro and in vivo. In this study, we assessed chemical and biological properties of these ligands and their Fe complexes in order to understand their marked activity. This included examination of their solution chemistry, electrochemistry, ability to mediate redox reactions, and antiproliferative activity against tumor cells. The higher antiproliferative efficacy of the HDpT series of chelators relative to the related di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) analogues can be ascribed, in part, to the redox potentials of their Fe complexes which lead to the generation of reactive oxygen species. The most effective HDpT ligands as antiproliferative agents possess considerable lipophilicity and were shown to be charge neutral at physiological pH, allowing access to intracellular Fe pools.

Knowledge Graph

Similar Paper

Dipyridyl Thiosemicarbazone Chelators with Potent and Selective Antitumor Activity Form Iron Complexes with Redox Activity
Journal of Medicinal Chemistry 2006.0
2-Acetylpyridine Thiosemicarbazones are Potent Iron Chelators and Antiproliferative Agents: Redox Activity, Iron Complexation and Characterization of their Antitumor Activity
Journal of Medicinal Chemistry 2009.0
Design, Synthesis, and Characterization of Novel Iron Chelators:  Structure−Activity Relationships of the 2-Benzoylpyridine Thiosemicarbazone Series and Their 3-Nitrobenzoyl Analogues as Potent Antitumor Agents
Journal of Medicinal Chemistry 2007.0
Design, Synthesis, and Characterization of New Iron Chelators with Anti-Proliferative Activity:  Structure−Activity Relationships of Novel Thiohydrazone Analogues
Journal of Medicinal Chemistry 2007.0
Halogenated 2′-Benzoylpyridine Thiosemicarbazone (XBpT) Chelators with Potent and Selective Anti-Neoplastic Activity: Relationship to Intracellular Redox Activity
Journal of Medicinal Chemistry 2011.0
Synthesis and characterization of quinoline-based thiosemicarbazones and correlation of cellular iron-binding efficacy to anti-tumor efficacy
Bioorganic & Medicinal Chemistry Letters 2012.0
Novel Second-Generation Di-2-Pyridylketone Thiosemicarbazones Show Synergism with Standard Chemotherapeutics and Demonstrate Potent Activity against Lung Cancer Xenografts after Oral and Intravenous Administration in Vivo
Journal of Medicinal Chemistry 2012.0
Alkyl Substituted 2′-Benzoylpyridine Thiosemicarbazone Chelators with Potent and Selective Anti-Neoplastic Activity: Novel Ligands that Limit Methemoglobin Formation
Journal of Medicinal Chemistry 2013.0
Structure–Activity Relationships of Novel Iron Chelators for the Treatment of Iron Overload Disease: The Methyl Pyrazinylketone Isonicotinoyl Hydrazone Series
Journal of Medicinal Chemistry 2008.0
Synthesis and biological evaluation of substituted 2-benzoylpyridine thiosemicarbazones: Novel structure–activity relationships underpinning their anti-proliferative and chelation efficacy
Bioorganic & Medicinal Chemistry Letters 2013.0