Structure–Activity Relationships of Novel Iron Chelators for the Treatment of Iron Overload Disease: The Methyl Pyrazinylketone Isonicotinoyl Hydrazone Series

Journal of Medicinal Chemistry
2008.0

Abstract

The design of novel Fe chelators with high Fe mobilization efficacy and low toxicity remains an important priority for the treatment of Fe overload disease. We have designed and synthesized the novel methyl pyrazinylketone isonicotinoyl hydrazone (HMPIH) analogs based on previously investigated aroylhydrazone chelators. The HMPIH series demonstrated high Fe mobilization efficacy from cells and showed limited to moderate antiproliferative activity. Importantly, this novel series demonstrated irreversible electrochemistry, which was attributed to the electron-withdrawing effects of the noncoordinating pyrazine N-atom. The latter functionality played a major role in forming redox-inactive complexes that prevent reactive oxygen species generation. In fact, the Fe complexes of the HMPIH series prevented the oxidation of ascorbate and hydroxylation of benzoate. We determined that the incorporation of electron-withdrawing groups is an important feature in the design of N, N, O-aroylhydrazones as candidate drugs for the treatment of Fe overload disease.

Knowledge Graph

Similar Paper

Structure–Activity Relationships of Novel Iron Chelators for the Treatment of Iron Overload Disease: The Methyl Pyrazinylketone Isonicotinoyl Hydrazone Series
Journal of Medicinal Chemistry 2008.0
Design, Synthesis, and Characterization of New Iron Chelators with Anti-Proliferative Activity:  Structure−Activity Relationships of Novel Thiohydrazone Analogues
Journal of Medicinal Chemistry 2007.0
Aroylhydrazone iron chelators: Tuning antioxidant and antiproliferative properties by hydrazide modifications
European Journal of Medicinal Chemistry 2016.0
Dipyridyl Thiosemicarbazone Chelators with Potent and Selective Antitumor Activity Form Iron Complexes with Redox Activity
Journal of Medicinal Chemistry 2006.0
Design, Synthesis, and Characterization of Novel Iron Chelators:  Structure−Activity Relationships of the 2-Benzoylpyridine Thiosemicarbazone Series and Their 3-Nitrobenzoyl Analogues as Potent Antitumor Agents
Journal of Medicinal Chemistry 2007.0
2-Acetylpyridine Thiosemicarbazones are Potent Iron Chelators and Antiproliferative Agents: Redox Activity, Iron Complexation and Characterization of their Antitumor Activity
Journal of Medicinal Chemistry 2009.0
Hydroxypyridinone-Based Iron Chelators with Broad-Ranging Biological Activities
Journal of Medicinal Chemistry 2020.0
Syntheses of iron(II) bis(pyridoxal isonicotinoylhydrazone)s and the in vivo iron-removal properties of some pyridoxal derivatives
Journal of Medicinal Chemistry 1983.0
Synthesis, physicochemical properties, and biological evaluation of N-substituted 2-alkyl-3-hydroxy-4(1H)-pyridinones: orally active iron chelators with clinical potential
Journal of Medicinal Chemistry 1993.0
Synthesis and characterization of quinoline-based thiosemicarbazones and correlation of cellular iron-binding efficacy to anti-tumor efficacy
Bioorganic & Medicinal Chemistry Letters 2012.0