Derivatives of (−)-7-Methyl-2-(5-(pyridinyl)pyridin-3-yl)-7-azabicyclo[2.2.1]heptane Are Potential Ligands for Positron Emission Tomography Imaging of Extrathalamic Nicotinic Acetylcholine Receptors

Journal of Medicinal Chemistry
2007.0

Abstract

A series of novel racemic 7-methyl-2-(5-(pyridinyl)pyridin-3-yl)-7-azabicyclo[2.2.1]heptane derivatives with picomolar in vitro binding affinity at nicotinic acetylcholine receptors (nAChRs) were synthesized and their enantiomers were resolved by semipreparative chiral HPLC. The (-)-enantiomers showed substantially greater in vitro inhibition binding affinity than the corresponding (+)-enantiomers. The compounds with best binding affinities have been radiolabeled with positron emitting isotopes 11C and 18F as potential radioligands for positron emission tomography imaging of the nAChR. In vivo enantioselectivity of the radiolabeled (-)-7-methyl-2-(5-(pyridinyl)pyridin-3-yl)-7-azabicyclo[2.2.1]heptane derivatives was observed in biodistribution studies in rodents and baboon. One of the radiolabeled compounds, (-)-7-methyl-2-exo-[3'-(2-[18F]fluoropyridin-5-yl))-5'-pyridinyl]-7-azabicyclo[2.2.1]heptane, exhibited good properties as a first practical PET radioligand for imaging of extrathalamic nAChR in baboon brain and holds promise for further investigation for human studies.

Knowledge Graph

Similar Paper

Derivatives of (−)-7-Methyl-2-(5-(pyridinyl)pyridin-3-yl)-7-azabicyclo[2.2.1]heptane Are Potential Ligands for Positron Emission Tomography Imaging of Extrathalamic Nicotinic Acetylcholine Receptors
Journal of Medicinal Chemistry 2007.0
New synthesis and evaluation of enantiomers of 7-methyl-2-exo-(3′-iodo-5′-pyridinyl)-7-azabicyclo[2.2.1]heptane as stereoselective ligands for PET imaging of nicotinic acetylcholine receptors
Bioorganic & Medicinal Chemistry Letters 2008.0
5-Substituted Derivatives of 6-Halogeno-3-((2-(S)-azetidinyl)methoxy)pyridine and 6-Halogeno-3-((2-(S)-pyrrolidinyl)methoxy)pyridine with Low Picomolar Affinity for α4β2 Nicotinic Acetylcholine Receptor and Wide Range of Lipophilicity:  Potential Probes for Imaging with Positron Emission Tomography
Journal of Medicinal Chemistry 2004.0
Discovery of (−)-7-Methyl-2-exo-[3′-(6-[<sup>18</sup>F]fluoropyridin-2-yl)-5′-pyridinyl]-7-azabicyclo[2.2.1]heptane, a Radiolabeled Antagonist for Cerebral Nicotinic Acetylcholine Receptor (α4β2-nAChR) with Optimal Positron Emission Tomography Imaging Properties
Journal of Medicinal Chemistry 2008.0
Derivatives of Dibenzothiophene for Positron Emission Tomography Imaging of α7-Nicotinic Acetylcholine Receptors
Journal of Medicinal Chemistry 2013.0
Synthesis and biological evaluation of novel carbon-11 labeled pyridyl ethers: candidate ligands for in vivo imaging of α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs) in the brain with positron emission tomography
Bioorganic &amp; Medicinal Chemistry 2009.0
Synthesis and Evaluation of a Novel Series of 2-Chloro-5-((1-methyl-2-(S)-pyrrolidinyl)methoxy)-3-(2-(4-pyridinyl)vinyl)pyridine Analogues as Potential Positron Emission Tomography Imaging Agents for Nicotinic Acetylcholine Receptors
Journal of Medicinal Chemistry 2002.0
Synthesis and Nicotinic Acetylcholine Receptor in Vivo Binding Properties of 2-Fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine: A New Positron Emission Tomography Ligand for Nicotinic Receptors
Journal of Medicinal Chemistry 1999.0
Synthesis and Evaluation of N-[<sup>11</sup>C]Methylated Analogues of Epibatidine as Tracers for Positron Emission Tomographic Studies of Nicotinic Acetylcholine Receptors
Journal of Medicinal Chemistry 1998.0
Synthesis and Nicotinic Acetylcholine Receptor Binding Properties of exo-2-(2‘-Fluoro-5‘-pyridinyl)-7-azabicyclo- [2.2.1]heptane:  A New Positron Emission Tomography Ligand for Nicotinic Receptors
Journal of Medicinal Chemistry 1997.0