Synthesis and biological evaluation of novel carbon-11 labeled pyridyl ethers: candidate ligands for in vivo imaging of α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs) in the brain with positron emission tomography

Bioorganic & Medicinal Chemistry
2009.0

Abstract

The most abundant subtype of cerebral nicotinic acetylcholine receptors (nAChR), alpha4beta2, plays a critical role in various brain functions and pathological states. Imaging agents suitable for visualization and quantification of alpha4beta2 nAChRs by positron emission tomography (PET) would present unique opportunities to define the function and pharmacology of the nAChRs in the living human brain. In this study, we report the synthesis, nAChR binding affinity, and pharmacological properties of several novel 3-pyridyl ether compounds. Most of these derivatives displayed a high affinity to the nAChR and a high subtype selectivity for alpha4beta2-nAChR. Three of these novel nAChR ligands were radiolabeled with the positron-emitting isotope (11)C and evaluated in animal studies as potential PET radiotracers for imaging of cerebral nAChRs with improved brain kinetics.

Knowledge Graph

Similar Paper

Synthesis and biological evaluation of novel carbon-11 labeled pyridyl ethers: candidate ligands for in vivo imaging of α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs) in the brain with positron emission tomography
Bioorganic & Medicinal Chemistry 2009.0
Derivatives of (−)-7-Methyl-2-(5-(pyridinyl)pyridin-3-yl)-7-azabicyclo[2.2.1]heptane Are Potential Ligands for Positron Emission Tomography Imaging of Extrathalamic Nicotinic Acetylcholine Receptors
Journal of Medicinal Chemistry 2007.0
Synthesis and Nicotinic Acetylcholine Receptor in Vivo Binding Properties of 2-Fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine: A New Positron Emission Tomography Ligand for Nicotinic Receptors
Journal of Medicinal Chemistry 1999.0
5-Substituted Derivatives of 6-Halogeno-3-((2-(S)-azetidinyl)methoxy)pyridine and 6-Halogeno-3-((2-(S)-pyrrolidinyl)methoxy)pyridine with Low Picomolar Affinity for α4β2 Nicotinic Acetylcholine Receptor and Wide Range of Lipophilicity:  Potential Probes for Imaging with Positron Emission Tomography
Journal of Medicinal Chemistry 2004.0
Synthesis and Evaluation of a Novel Series of 2-Chloro-5-((1-methyl-2-(S)-pyrrolidinyl)methoxy)-3-(2-(4-pyridinyl)vinyl)pyridine Analogues as Potential Positron Emission Tomography Imaging Agents for Nicotinic Acetylcholine Receptors
Journal of Medicinal Chemistry 2002.0
Synthesis and Evaluation of N-[<sup>11</sup>C]Methylated Analogues of Epibatidine as Tracers for Positron Emission Tomographic Studies of Nicotinic Acetylcholine Receptors
Journal of Medicinal Chemistry 1998.0
Novel 3-Pyridyl Ethers with Subnanomolar Affinity for Central Neuronal Nicotinic Acetylcholine Receptors
Journal of Medicinal Chemistry 1996.0
Discovery of (−)-7-Methyl-2-exo-[3′-(6-[<sup>18</sup>F]fluoropyridin-2-yl)-5′-pyridinyl]-7-azabicyclo[2.2.1]heptane, a Radiolabeled Antagonist for Cerebral Nicotinic Acetylcholine Receptor (α4β2-nAChR) with Optimal Positron Emission Tomography Imaging Properties
Journal of Medicinal Chemistry 2008.0
Derivatives of Dibenzothiophene for Positron Emission Tomography Imaging of α7-Nicotinic Acetylcholine Receptors
Journal of Medicinal Chemistry 2013.0
Synthesis, Binding, and Modeling Studies of New Cytisine Derivatives, as Ligands for Neuronal Nicotinic Acetylcholine Receptor Subtypes
Journal of Medicinal Chemistry 2009.0