Synthesis, ligand–receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists

Bioorganic & Medicinal Chemistry
2008.0

Abstract

The study of some 4-substituted-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives, designed as hA(3) adenosine receptor antagonists, is reported. The new compounds bear on the four-position different acylamino, sulfonylamino, benzylureido and benzyloxy moieties, which have also been combined with a para-methoxy group on the 2-phenyl ring or with a nitro residue at the six-position. Many derivatives show high hA(3) adenosine receptor affinities and selectivities both versus hA(1) and hA(2A) receptors. The observed structure-affinity relationships of this class of antagonists have been exhaustively rationalized using the recently published ligand-based homology modeling (LBHM) approach. The selected 4-bismethanesulfonylamino-2-phenyl-1,2,4-triazolo[4,3-a]quinoxalin-1-one (13), which shows high hA(3) affinity (K(i)=5.5nM) and selectivity versus hA(1), hA(2A) (both selectivity ratios>1800) and hA(2B) (cAMP assay, IC(50)>10,000nM) receptors, was tested in an in vitro rat model of cerebral ischemia, proving to be effective in preventing the failure of synaptic activity, induced by oxygen and glucose deprivation in the hippocampus, and in delaying the occurrence of anoxic depolarization.

Knowledge Graph

Similar Paper

Synthesis, ligand–receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists
Bioorganic & Medicinal Chemistry 2008.0
New 2-Arylpyrazolo[3,4-c]quinoline Derivatives as Potent and Selective Human A<sub>3</sub>Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligand−Receptor Modeling Studies
Journal of Medicinal Chemistry 2007.0
4-Amido-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-ones as New Potent and Selective Human A<sub>3</sub>Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligand−Receptor Modeling Studies
Journal of Medicinal Chemistry 2006.0
1,2,4-Triazolo[4,3-a]quinoxalin-1-one Moiety as an Attractive Scaffold To Develop New Potent and Selective Human A<sub>3</sub> Adenosine Receptor Antagonists:  Synthesis, Pharmacological, and Ligand−Receptor Modeling Studies
Journal of Medicinal Chemistry 2004.0
1,2,4-Triazolo[1,5-a]quinoxaline as a Versatile Tool for the Design of Selective Human A<sub>3</sub>Adenosine Receptor Antagonists:  Synthesis, Biological Evaluation, and Molecular Modeling Studies of 2-(Hetero)aryl- and 2-Carboxy-Substitued Derivatives
Journal of Medicinal Chemistry 2005.0
Pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one as a New Scaffold To Develop Potent and Selective Human A<sub>3</sub>Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligand−Receptor Modeling Studies
Journal of Medicinal Chemistry 2009.0
1,2,4-Triazolo[4,3-a]quinoxalin-1-one:  A Versatile Tool for the Synthesis of Potent and Selective Adenosine Receptor Antagonists
Journal of Medicinal Chemistry 2000.0
4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants
Journal of Medicinal Chemistry 1990.0
Synthesis and Structure−Activity Relationships of a New Set of 2-Arylpyrazolo[3,4-c]quinoline Derivatives as Adenosine Receptor Antagonists
Journal of Medicinal Chemistry 2000.0
1H-Imidazo[4,5-c]quinolin-4-amines: novel non-xanthine adenosine antagonists
Journal of Medicinal Chemistry 1991.0