A Novel Bis-Tetrahydrofuranylurethane-Containing Nonpeptidic Protease Inhibitor (PI), GRL-98065, Is Potent against Multiple-PI-Resistant Human Immunodeficiency Virus In Vitro

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

We designed, synthesized, and identified GRL-98065, a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) containing the structure-based designed privileged cyclic ether-derived nonpeptide P2 ligand, 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF), and a sulfonamide isostere, which is highly potent against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC(50)], 0.0002 to 0.0005 microM) with minimal cytotoxicity (50% cytotoxicity, 35.7 microM in CD4(+) MT-2 cells). GRL-98065 blocked the infectivity and replication of each of the HIV-1(NL4-3) variants exposed to and selected by up to a 5 microM concentration of saquinavir, indinavir, nelfinavir, or ritonavir and a 1 microM concentration of lopinavir or atazanavir (EC(50), 0.0015 to 0.0075 microM), although it was less active against HIV-1(NL4-3) selected by amprenavir (EC(50), 0.032 microM). GRL-98065 was also potent against multiple-PI-resistant clinical HIV-1 variants isolated from patients who had no response to existing antiviral regimens after having received a variety of antiviral agents, HIV-1 isolates of various subtypes, and HIV-2 isolates examined. Structural analyses revealed that the close contact of GRL-98065 with the main chain of the protease active-site amino acids (Asp29 and Asp30) is important for its potency and wide-spectrum activity against multiple-PI-resistant HIV-1 variants. The present data demonstrate that the privileged nonpeptide P2 ligand, bis-THF, is critical for the binding of GRL-98065 to the HIV protease substrate binding site and that this scaffold can confer highly potent antiviral activity against a wide spectrum of HIV isolates.

Knowledge Graph

Similar Paper

A Novel Bis-Tetrahydrofuranylurethane-Containing Nonpeptidic Protease Inhibitor (PI), GRL-98065, Is Potent against Multiple-PI-Resistant Human Immunodeficiency Virus In Vitro
Antimicrobial Agents and Chemotherapy 2007.0
Novel Protease Inhibitors (PIs) Containing Macrocyclic Components and 3( R ),3a( S ),6a( R )- bis -Tetrahydrofuranylurethane That Are Potent against Multi-PI-Resistant HIV-1 Variants In Vitro
Antimicrobial Agents and Chemotherapy 2010.0
GRL-02031, a Novel Nonpeptidic Protease Inhibitor (PI) Containing a Stereochemically Defined Fused Cyclopentanyltetrahydrofuran Potent against Multi-PI-Resistant Human Immunodeficiency Virus Type 1 In Vitro
Antimicrobial Agents and Chemotherapy 2009.0
Design of HIV-1 Protease Inhibitors with C3-Substituted Hexahydrocyclopentafuranyl Urethanes as P2-Ligands: Synthesis, Biological Evaluation, and Protein–Ligand X-ray Crystal Structure
Journal of Medicinal Chemistry 2011.0
Design of HIV-1 Protease Inhibitors with Pyrrolidinones and Oxazolidinones as Novel P1′-Ligands To Enhance Backbone-Binding Interactions with Protease: Synthesis, Biological Evaluation, and Protein−Ligand X-ray Studies
Journal of Medicinal Chemistry 2009.0
Structure-Based Design of Novel HIV-1 Protease Inhibitors To Combat Drug Resistance
Journal of Medicinal Chemistry 2006.0
Design and Synthesis of Potent HIV-1 Protease Inhibitors Incorporating Hexahydrofuropyranol-Derived High Affinity P<sub>2</sub> Ligands: Structure−Activity Studies and Biological Evaluation
Journal of Medicinal Chemistry 2011.0
A Novel, Picomolar Inhibitor of Human Immunodeficiency Virus Type 1 Protease
Journal of Medicinal Chemistry 1996.0
Preliminary SAR and biological evaluation of potent HIV-1 protease inhibitors with pyrimidine bases as novel P2 ligands to enhance activity against DRV-resistant HIV-1 variants
European Journal of Medicinal Chemistry 2020.0
Highly Potent HIV-1 Protease Inhibitors with Novel Tricyclic P2 Ligands: Design, Synthesis, and Protein–Ligand X-ray Studies
Journal of Medicinal Chemistry 2013.0