A Novel, Picomolar Inhibitor of Human Immunodeficiency Virus Type 1 Protease

Journal of Medicinal Chemistry
1996.0

Abstract

The design, synthesis, and molecular modeling studies of a novel series of azacyclic ureas, which are inhibitors of human immunodeficiency virus type 1 (HIV-1) protease that incorporate different ligands for the S1', S2, and S2' substrate-binding sites of HIV-1 protease are described. The synthesis of this series is highly flexible in the sense that the P1', P2, and P2' residues of the inhibitors can be changed independently. Molecular modeling studies on the phenyl ring of the P2 and P2' ligand suggested incorporation of hydrogen-bonding donor/acceptor groups at the 3' and 4-positions of the phenyl ring should increase binding potency. This led to the discovery of compound 7f (A-98881), which possesses high potency in the HIV-1 protease inhibition assay and the in vitro MT-4 cell culture assay (Ki = approximately 5 pM and EC50 = 0.002 microM). This compares well with the symmetrical cyclic urea 1 pioneered at DuPont Merck.

Knowledge Graph

Similar Paper

A Novel, Picomolar Inhibitor of Human Immunodeficiency Virus Type 1 Protease
Journal of Medicinal Chemistry 1996.0
Preparation and Structure−Activity Relationship of Novel P1/P1‘-Substituted Cyclic Urea-Based Human Immunodeficiency Virus Type-1 Protease Inhibitors
Journal of Medicinal Chemistry 1996.0
The synthesis and evaluation of cyclic ureas as HIV protease inhibitors: Modifications of the P1/P1′ residues
Bioorganic & Medicinal Chemistry Letters 1998.0
HIV Protease Inhibitory Bis-benzamide Cyclic Ureas:  A Quantitative Structure−Activity Relationship Analysis
Journal of Medicinal Chemistry 1996.0
Design and synthesis of potent HIV-1 protease inhibitors incorporating hydroxyprolinamides as novel P2 ligands
Bioorganic & Medicinal Chemistry Letters 2011.0
Design of HIV-1 Protease Inhibitors with Pyrrolidinones and Oxazolidinones as Novel P1′-Ligands To Enhance Backbone-Binding Interactions with Protease: Synthesis, Biological Evaluation, and Protein−Ligand X-ray Studies
Journal of Medicinal Chemistry 2009.0
Design and Synthesis of Potent HIV-1 Protease Inhibitors Incorporating Hexahydrofuropyranol-Derived High Affinity P<sub>2</sub> Ligands: Structure−Activity Studies and Biological Evaluation
Journal of Medicinal Chemistry 2011.0
Potent cyclic urea HIV protease inhibitors with benzofused heterocycles as P2/P2′ groups
Bioorganic &amp; Medicinal Chemistry Letters 1996.0
Design of HIV-1 Protease Inhibitors with C3-Substituted Hexahydrocyclopentafuranyl Urethanes as P2-Ligands: Synthesis, Biological Evaluation, and Protein–Ligand X-ray Crystal Structure
Journal of Medicinal Chemistry 2011.0
Highly Potent HIV-1 Protease Inhibitors with Novel Tricyclic P2 Ligands: Design, Synthesis, and Protein–Ligand X-ray Studies
Journal of Medicinal Chemistry 2013.0