Isoindolo[2,1-a]quinoxaline Derivatives, Novel Potent Antitumor Agents with Dual Inhibition of Tubulin Polymerization and Topoisomerase I

Journal of Medicinal Chemistry
2008.0

Abstract

Isoindoloquinoxalines 4 and 5 were obtained by refluxing 2-(2'-aminoaryl)-1-cyanoisoindoles 3a- e in acetic or formic acid. All derivatives were screened by the National Cancer Institute (Bethesda, MD) for the in vitro one dose primary anticancer assay against a 3-cell line panel. Compounds 4a- e, screened against a panel of about 60 human tumor cell lines, showed remarkable antineoplastic activity; they had GI 50 values in the low micromolar or submicromolar range and reached, in the case of 4c, nanomolar concentrations on 88% of the 59 tested cell lines. Flow cytometric analysis of cell cycle after treatment with 4c demonstrated an arrest of the cell cycle in G2/M phase. This effect was accompanied with apoptosis of the cells, mitochondrial depolarization, generation of reactive oxygen species, and activation of caspase-3 and caspase-9. Moreover, 4c induced a clear increase in the mitotic index, inhibited microtubule assembly in vitro, and interestingly also acted as a topoisomerase I inhibitor.

Knowledge Graph

Similar Paper

Isoindolo[2,1-a]quinoxaline Derivatives, Novel Potent Antitumor Agents with Dual Inhibition of Tubulin Polymerization and Topoisomerase I
Journal of Medicinal Chemistry 2008.0
Water-soluble isoindolo[2,1-a]quinoxalin-6-imines: In vitro antiproliferative activity and molecular mechanism(s) of action
European Journal of Medicinal Chemistry 2015.0
Design, synthesis and biological evaluation of 3-substituted indenoisoquinoline derivatives as topoisomerase I inhibitors
Bioorganic & Medicinal Chemistry Letters 2016.0
Synthesis and Antiproliferative Evaluation of Certain Indeno[1,2-c]quinoline Derivatives. Part 2
Journal of Medicinal Chemistry 2010.0
Design, synthesis, and biological evaluation of 1,3-diarylisoquinolines as novel topoisomerase I catalytic inhibitors
European Journal of Medicinal Chemistry 2018.0
Synthesis, cytotoxicity and structure-activity relationship of indolizinoquinolinedione derivatives as DNA topoisomerase IB catalytic inhibitors
European Journal of Medicinal Chemistry 2018.0
New derivatives of 11-methyl-6-[2-(dimethylamino)ethyl]-6H-indolo[2,3-b]quinoline as cytotoxic DNA topoisomerase II inhibitors
Bioorganic & Medicinal Chemistry Letters 2012.0
Synthesis, Cytotoxicity, DNA Interaction, and Topoisomerase II Inhibition Properties of Novel Indeno[2,1-c]quinolin-7-one and Indeno[1,2-c]isoquinolin-5,11-dione Derivatives
Journal of Medicinal Chemistry 2008.0
Synthesis of New Indeno[1,2-c]isoquinolines:  Cytotoxic Non-Camptothecin Topoisomerase I Inhibitors
Journal of Medicinal Chemistry 2000.0
Synthesis, cytotoxic activities and structure–activity relationships of topoisomerase I inhibitors: Indolizinoquinoline-5,12-dione derivatives
Bioorganic & Medicinal Chemistry 2008.0