Discovery of a Novel Series of Biphenyl Benzoic Acid Derivatives as Highly Potent and Selective Human β3 Adrenergic Receptor Agonists with Good Oral Bioavailability. Part II

Journal of Medicinal Chemistry
2008.0

Abstract

The left-hand side (LHS) and central part of our first generation biphenyl (FGB) series was modified to improve in vitro and in vivo beta3-AR potency without loss of oral bioavailability. First, in this study, we focused our efforts on replacement of the 3-chlorophenyl moiety in the LHS of FGB analogues with 3-pyridyl ring analogues to adjust the lipophilicity. Second, we investigated the replacement of the central part of this series and discovered that introduction of a methyl group into the alpha-position of the phenethylamine moiety greatly enhanced potency keeping good oral availability. Finally, the replacement of the two carbon linker of the central part with an ethoxy-based linker provided improved potency and PK profiles. As a result of these studies, several analogues (i.e., 9h, 9k, 9l, 10g, 10m, 10p, 10r, 11b, and 11l) were identified that displayed an excellent balance of very higher human beta3-AR potency compared to the FGB compounds, high selectivity, and good pharmacokinetic profiles. Furthermore, these several compounds showed high in vivo efficacy in an overactive bladder (OAB) model. These findings suggest that our selected second generation biphenyl (SGB) series compounds may be attractive new successful therapeutic candidates for the treatment of OAB.

Knowledge Graph

Similar Paper

Discovery of a Novel Series of Biphenyl Benzoic Acid Derivatives as Highly Potent and Selective Human β3 Adrenergic Receptor Agonists with Good Oral Bioavailability. Part II
Journal of Medicinal Chemistry 2008.0
Discovery of a Novel Series of Biphenyl Benzoic Acid Derivatives as Potent and Selective Human β<sub>3</sub>-Adrenergic Receptor Agonists with Good Oral Bioavailability. Part I
Journal of Medicinal Chemistry 2008.0
Discovery of novel series of benzoic acid derivatives containing biphenyl ether moiety as potent and selective human β3-adrenergic receptor agonists: Part IV
Bioorganic &amp; Medicinal Chemistry Letters 2008.0
Discovery of Highly Potent and Selective Biphenylacylsulfonamide-Based β<sub>3</sub>-Adrenergic Receptor Agonists and Evaluation of Physical Properties as Potential Overactive Bladder Therapies: Part 5
Journal of Medicinal Chemistry 2009.0
Discovery of a Novel Series of Benzoic Acid Derivatives as Potent and Selective Human β<sub>3</sub>Adrenergic Receptor Agonists with Good Oral Bioavailability. 3. Phenylethanolaminotetraline (PEAT) Skeleton Containing Biphenyl or Biphenyl Ether Moiety
Journal of Medicinal Chemistry 2008.0
Synthesis and evaluation of novel phenoxypropanolamine derivatives containing acetanilides as potent and selective β3-adrenergic receptor agonists
Bioorganic &amp; Medicinal Chemistry 2009.0
Biarylaniline Phenethanolamines as Potent and Selective β<sub>3</sub>Adrenergic Receptor Agonists
Journal of Medicinal Chemistry 2006.0
Discovery of highly potent and selective biphenylacylsulfonamide-based β3-adrenergic receptor agonists and molecular modeling based on the solved X-ray structure of the β2-adrenergic receptor: Part 6
Bioorganic &amp; Medicinal Chemistry Letters 2009.0
Discovery of Vibegron: A Potent and Selective β<sub>3</sub>Adrenergic Receptor Agonist for the Treatment of Overactive Bladder
Journal of Medicinal Chemistry 2016.0
Discovery of novel acetanilide derivatives as potent and selective β3-adrenergic receptor agonists
European Journal of Medicinal Chemistry 2009.0