Discovery of a Novel Series of Biphenyl Benzoic Acid Derivatives as Potent and Selective Human β3-Adrenergic Receptor Agonists with Good Oral Bioavailability. Part I

Journal of Medicinal Chemistry
2008.0

Abstract

A novel class of biphenyl analogues containing a benzoic acid moiety based on lead compound 8i have been identified as potent and selective human beta 3 adrenergic receptor (beta 3-AR) agonists with good oral bioavailability and long plasma half-life. After further substituent effects were investigated at the terminal phenyl ring of lead compound 8i, we have discovered that more lipophilic substitution at the R position improved potency and selectivity. As a result of these studies, 10a and 10e were identified as the leading candidates with the best balance of potency, selectivity, and pharmacokinetic profiles. In addition, compounds 10a and 10e were evaluated to be efficacious for a carbachol-induced increase of intravesical pressure, such as an overactive bladder model in anesthetized dogs. This represents the first demonstrated result dealing with beta 3-AR agonists.

Knowledge Graph

Similar Paper

Discovery of a Novel Series of Biphenyl Benzoic Acid Derivatives as Potent and Selective Human β<sub>3</sub>-Adrenergic Receptor Agonists with Good Oral Bioavailability. Part I
Journal of Medicinal Chemistry 2008.0
Discovery of a Novel Series of Biphenyl Benzoic Acid Derivatives as Highly Potent and Selective Human β3 Adrenergic Receptor Agonists with Good Oral Bioavailability. Part II
Journal of Medicinal Chemistry 2008.0
Discovery of novel series of benzoic acid derivatives containing biphenyl ether moiety as potent and selective human β3-adrenergic receptor agonists: Part IV
Bioorganic &amp; Medicinal Chemistry Letters 2008.0
Discovery of a Novel Series of Benzoic Acid Derivatives as Potent and Selective Human β<sub>3</sub>Adrenergic Receptor Agonists with Good Oral Bioavailability. 3. Phenylethanolaminotetraline (PEAT) Skeleton Containing Biphenyl or Biphenyl Ether Moiety
Journal of Medicinal Chemistry 2008.0
Discovery of Highly Potent and Selective Biphenylacylsulfonamide-Based β<sub>3</sub>-Adrenergic Receptor Agonists and Evaluation of Physical Properties as Potential Overactive Bladder Therapies: Part 5
Journal of Medicinal Chemistry 2009.0
Biarylaniline Phenethanolamines as Potent and Selective β<sub>3</sub>Adrenergic Receptor Agonists
Journal of Medicinal Chemistry 2006.0
Synthesis and evaluation of novel phenoxypropanolamine derivatives containing acetanilides as potent and selective β3-adrenergic receptor agonists
Bioorganic &amp; Medicinal Chemistry 2009.0
Discovery of a novel, potent and selective human β3-adrenergic receptor agonist
Bioorganic &amp; Medicinal Chemistry Letters 2005.0
Discovery of Novel Indazole Derivatives as Highly Potent and Selective Human β<sub>3</sub>-Adrenergic Receptor Agonists with the Possibility of Having No Cardiovascular Side Effects
Journal of Medicinal Chemistry 2015.0
Discovery of NovelN-Phenylglycine Derivatives as Potent and Selective β<sub>3</sub>-Adrenoceptor Agonists for the Treatment of Frequent Urination and Urinary Incontinence
Journal of Medicinal Chemistry 2001.0