1H-Cyclopentapyrimidine-2,4(1H,3H)-dione-Related Ionotropic Glutamate Receptors Ligands. Structure−Activity Relationships and Identification of Potent and Selective iGluR5 Modulators

Journal of Medicinal Chemistry
2008.0

Abstract

(S)-CPW399 ((S)-1) is a potent and excitotoxic AMPA receptor partial agonist. Modifying the cyclopentane ring of (S)-1, we developed two of the most potent and selective functional antagonists (5 and 7) for kainate receptor (KA-R) subunit iGluR5. Derivatives 5 and 7, with their unique pharmacological profile, may lead to a better understanding of the different roles and modes of action of iGluR1-5 subunits, paving the way for the synthesis of new potent, subunit selective iGluR5 modulators.

Knowledge Graph

Similar Paper

1H-Cyclopentapyrimidine-2,4(1H,3H)-dione-Related Ionotropic Glutamate Receptors Ligands. Structure−Activity Relationships and Identification of Potent and Selective iGluR5 Modulators
Journal of Medicinal Chemistry 2008.0
The Glutamate Receptor GluR5 Agonist (S)-2-Amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic Acid and the 8-Methyl Analogue: Synthesis, Molecular Pharmacology, and Biostructural Characterization†PDB ID: 2WKY.
Journal of Medicinal Chemistry 2009.0
(S)-2-Amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic Acid, a Potent and Selective Agonist at the GluR5 Subtype of Ionotropic Glutamate Receptors. Synthesis, Modeling, and Molecular Pharmacology
Journal of Medicinal Chemistry 2003.0
4-Alkyl- and 4-Cinnamylglutamic Acid Analogues Are Potent GluR5 Kainate Receptor Agonists
Journal of Medicinal Chemistry 2000.0
Selective Kainate Receptor (GluK1) Ligands Structurally Based upon 1H-Cyclopentapyrimidin-2,4(1H,3H)-dione: Synthesis, Molecular Modeling, and Pharmacological and Biostructural Characterization
Journal of Medicinal Chemistry 2011.0
Synthesis and Pharmacology of Willardiine Derivatives Acting as Antagonists of Kainate Receptors
Journal of Medicinal Chemistry 2005.0
Chemo-Enzymatic Synthesis of a Series of 2,4-Syn-Functionalized (S)-Glutamate Analogues: New Insight into the Structure−Activity Relation of Ionotropic Glutamate Receptor Subtypes 5, 6, and 7
Journal of Medicinal Chemistry 2008.0
Structure−Activity Relationship Studies on N<sup>3</sup>-Substituted Willardiine Derivatives Acting as AMPA or Kainate Receptor Antagonists
Journal of Medicinal Chemistry 2006.0
4-Alkylidenyl glutamic acids, potent and selective GluR5 agonists
Bioorganic &amp; Medicinal Chemistry Letters 2000.0
Substituted 2-Aminothiopen-derivatives: A potential new class of GluR6-Antagonists
European Journal of Medicinal Chemistry 2010.0