Selective Kainate Receptor (GluK1) Ligands Structurally Based upon 1H-Cyclopentapyrimidin-2,4(1H,3H)-dione: Synthesis, Molecular Modeling, and Pharmacological and Biostructural Characterization

Journal of Medicinal Chemistry
2011.0

Abstract

The physiological function of kainate receptors (GluK1-GluK5) in the central nervous system is not fully understood yet. With the aim of developing potent and selective GluK1 ligands, we have synthesized a series of new thiophene-based GluK1 agonists (6a-c) and antagonists (7a-d). Pharmacological evaluation revealed that they are selective for the GluK1 subunit, with 7b being the most subtype-selective ligand reported to date (GluK1 vs GluK3). The antagonist 7a was cocrystallized with the GluK1 ligand binding domain, and an X-ray crystallographic analysis revealed the largest flexibility in GluK1 ligand binding domain opening upon binding of a ligand seen to date. The results provide new insights into the molecular mechanism of GluK1 receptor ligand binding and pave the way to the development of new tool compounds for studying kainate receptor function.

Knowledge Graph

Similar Paper

Selective Kainate Receptor (GluK1) Ligands Structurally Based upon 1H-Cyclopentapyrimidin-2,4(1H,3H)-dione: Synthesis, Molecular Modeling, and Pharmacological and Biostructural Characterization
Journal of Medicinal Chemistry 2011.0
Chemoenzymatic Synthesis of New 2,4-syn-Functionalized (S)-Glutamate Analogues and Structure–Activity Relationship Studies at Ionotropic Glutamate Receptors and Excitatory Amino Acid Transporters
Journal of Medicinal Chemistry 2013.0
Substituted 2-Aminothiopen-derivatives: A potential new class of GluR6-Antagonists
European Journal of Medicinal Chemistry 2010.0
Synthesis of a Series of Aryl Kainic Acid Analogs and Evaluation in Cells Stably Expressing the Kainate Receptor humGluR6
Journal of Medicinal Chemistry 1996.0
Tweaking Subtype Selectivity and Agonist Efficacy at (S)-2-Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propionic acid (AMPA) Receptors in a Small Series of BnTetAMPA Analogues
Journal of Medicinal Chemistry 2016.0
4-Alkyl- and 4-Cinnamylglutamic Acid Analogues Are Potent GluR5 Kainate Receptor Agonists
Journal of Medicinal Chemistry 2000.0
The Glutamate Receptor GluR5 Agonist (S)-2-Amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic Acid and the 8-Methyl Analogue: Synthesis, Molecular Pharmacology, and Biostructural Characterization†PDB ID: 2WKY.
Journal of Medicinal Chemistry 2009.0
Chemo-Enzymatic Synthesis of a Series of 2,4-Syn-Functionalized (S)-Glutamate Analogues: New Insight into the Structure−Activity Relation of Ionotropic Glutamate Receptor Subtypes 5, 6, and 7
Journal of Medicinal Chemistry 2008.0
1H-Cyclopentapyrimidine-2,4(1H,3H)-dione-Related Ionotropic Glutamate Receptors Ligands. Structure−Activity Relationships and Identification of Potent and Selective iGluR5 Modulators
Journal of Medicinal Chemistry 2008.0
Structural Investigation of the 7-Chloro-3-hydroxy-1H-quinazoline-2,4-dione Scaffold to Obtain AMPA and Kainate Receptor Selective Antagonists. Synthesis, Pharmacological, and Molecular Modeling Studies
Journal of Medicinal Chemistry 2006.0