N,N-bis(Cyclohexanol)amine Aryl Esters: A New Class of Highly Potent Transporter-Dependent Multidrug Resistance Inhibitors

Journal of Medicinal Chemistry
2009.0

Abstract

A new series of Pgp-dependent MDR inhibitors having a N,N-bis(cyclohexanol)amine scaffold was designed on the basis of the frozen analogue approach. The scaffold chosen gives origin to different geometrical isomers. The new compounds showed a wide range of potencies and efficacies on doxorubicin-resistant erythroleukemia K562 cells in the pirarubicin uptake assay. The most interesting compounds (isomers of 3) were studied further evaluating their action on the ATPase activity present in rat small intestine membrane vesicles and doxorubicin cytotoxicity potentiation on K562 cells. The latter assay was performed also on the isomers of 4. The four isomers of each set present different behavior in each of these tests. Compound 3d shows the most promising properties as it was able to completely reverse Pgp-dependent pirarubicin extrusion at low nanomolar concentration, inhibited ATPase activity at 5 x 10(-9) and increased the cytotoxicity of doxorubicin with a reversal fold (RF) of 36.4 at 3 microM concentration.

Knowledge Graph

Similar Paper

N,N-bis(Cyclohexanol)amine Aryl Esters: A New Class of Highly Potent Transporter-Dependent Multidrug Resistance Inhibitors
Journal of Medicinal Chemistry 2009.0
Isomeric N,N-Bis(cyclohexanol)amine Aryl Esters:  The Discovery of a New Class of Highly Potent P-Glycoprotein (Pgp)-dependent Multidrug Resistance (MDR) Inhibitors
Journal of Medicinal Chemistry 2007.0
New structure–activity relationship studies in a series of N,N-bis(cyclohexanol)amine aryl esters as potent reversers of P-glycoprotein-mediated multidrug resistance (MDR)
Bioorganic & Medicinal Chemistry 2013.0
Structure−Activity Relationships Studies in a Series of N,N-Bis(alkanol)amine Aryl Esters as P-Glycoprotein (Pgp) Dependent Multidrug Resistance (MDR) Inhibitors
Journal of Medicinal Chemistry 2010.0
Multidrug resistance (MDR) reversers: High activity and efficacy in a series of asymmetrical N,N-bis(alkanol)amine aryl esters
European Journal of Medicinal Chemistry 2014.0
N -alkanol- N -cyclohexanol amine aryl esters: Multidrug resistance (MDR) reversing agents with high potency and efficacy
European Journal of Medicinal Chemistry 2017.0
Inhibition of P-glycoprotein-mediated Multidrug Resistance (MDR) by N,N-bis(cyclohexanol)amine aryl esters: Further restriction of molecular flexibility maintains high potency and efficacy
Bioorganic & Medicinal Chemistry Letters 2011.0
Design and synthesis of new potent N,N -bis(arylalkyl)piperazine derivatives as multidrug resistance (MDR) reversing agents
European Journal of Medicinal Chemistry 2018.0
Design, synthesis and biological evaluation of stereo- and regioisomers of amino aryl esters as multidrug resistance (MDR) reversers
European Journal of Medicinal Chemistry 2019.0
Modulation of the spacer in N,N-bis(alkanol)amine aryl ester heterodimers led to the discovery of a series of highly potent P-glycoprotein-based multidrug resistance (MDR) modulators
European Journal of Medicinal Chemistry 2019.0