Structure−Activity Relationships Studies in a Series of N,N-Bis(alkanol)amine Aryl Esters as P-Glycoprotein (Pgp) Dependent Multidrug Resistance (MDR) Inhibitors

Journal of Medicinal Chemistry
2010.0

Abstract

As a continuation of a previous research, a series of N,N-bis(alkanol)amine aryl esters, as Pgp-dependent MDR inhibitors, was designed and synthesized. The aromatic ester portions are suitably modulated, and new aryl rings (Ar(1) and Ar(2)) were combined with trans-3-(3,4,5-trimethoxyphenyl)vinyl, 3,4,5-trimethoxybenzyl and anthracene moieties that were present in the most potent previously studied compounds. The new compounds showed a wide range of potencies and efficacies on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay. Selected compounds (5, 6, 8, 9, and 21) were further studied, evaluating their action on doxorubicin cytotoxicity potentiation on K562 cells; they significantly enhanced doxorubicin cytotoxicity on K562/DOX cells, confirming the results obtained with pirarubicin. Compound 9 shows the most promising properties as it was able to nearly completely reverse Pgp-dependent pirarubicin extrusion at nanomolar doses and increased the cytotoxicity of doxorubicin with a reversal fold (RF) of 19.1 at 3 microM dose.

Knowledge Graph

Similar Paper

Structure−Activity Relationships Studies in a Series of N,N-Bis(alkanol)amine Aryl Esters as P-Glycoprotein (Pgp) Dependent Multidrug Resistance (MDR) Inhibitors
Journal of Medicinal Chemistry 2010.0
New structure–activity relationship studies in a series of N,N-bis(cyclohexanol)amine aryl esters as potent reversers of P-glycoprotein-mediated multidrug resistance (MDR)
Bioorganic & Medicinal Chemistry 2013.0
Multidrug resistance (MDR) reversers: High activity and efficacy in a series of asymmetrical N,N-bis(alkanol)amine aryl esters
European Journal of Medicinal Chemistry 2014.0
N,N-bis(Cyclohexanol)amine Aryl Esters: A New Class of Highly Potent Transporter-Dependent Multidrug Resistance Inhibitors
Journal of Medicinal Chemistry 2009.0
Isomeric N,N-Bis(cyclohexanol)amine Aryl Esters:  The Discovery of a New Class of Highly Potent P-Glycoprotein (Pgp)-dependent Multidrug Resistance (MDR) Inhibitors
Journal of Medicinal Chemistry 2007.0
Modulation of the spacer in N,N-bis(alkanol)amine aryl ester heterodimers led to the discovery of a series of highly potent P-glycoprotein-based multidrug resistance (MDR) modulators
European Journal of Medicinal Chemistry 2019.0
N -alkanol- N -cyclohexanol amine aryl esters: Multidrug resistance (MDR) reversing agents with high potency and efficacy
European Journal of Medicinal Chemistry 2017.0
Design and synthesis of new potent N,N -bis(arylalkyl)piperazine derivatives as multidrug resistance (MDR) reversing agents
European Journal of Medicinal Chemistry 2018.0
Design, synthesis and biological evaluation of stereo- and regioisomers of amino aryl esters as multidrug resistance (MDR) reversers
European Journal of Medicinal Chemistry 2019.0
Inhibition of P-glycoprotein-mediated Multidrug Resistance (MDR) by N,N-bis(cyclohexanol)amine aryl esters: Further restriction of molecular flexibility maintains high potency and efficacy
Bioorganic & Medicinal Chemistry Letters 2011.0