Potential utility of histamine H3 receptor antagonist pharmacophore in antipsychotics

Bioorganic & Medicinal Chemistry Letters
2009.0

Abstract

Histamine H3 receptor (H3R) antagonists have some antipsychotic properties although the clear molecular mechanism is still unknown. As actually the most effective and less side effective antipsychotics are drugs with multiple targets we have designed typical and atypical neuroleptics with an additional histamine H3 pharmacophore. The 4-(3-piperidinopropoxy)phenyl pharmacophore moiety has been linked to amitriptyline, maprotiline, chlorpromazine, chlorprothixene, fluphenazine, and clozapine. Amide, amine and ester elements have been used generally to maintain or slightly shift affinity at dopamine D(2)-like receptors (D2 and D3), to decrease affinity at histamine H(1) receptors, and to obtain H3R ligands with low nanomolar or subnanomolar affinity. Change of effects at D(1)-like receptors (D1) and (D5) were heterogeneous. With these newly profiled compounds different antipsychotic properties might be achieved.

Knowledge Graph

Similar Paper

Potential utility of histamine H3 receptor antagonist pharmacophore in antipsychotics
Bioorganic & Medicinal Chemistry Letters 2009.0
Acidic elements in histamine H3 receptor antagonists
Bioorganic & Medicinal Chemistry Letters 2010.0
Identification and profiling of 3,5-dimethyl-isoxazole-4-carboxylic acid [2-methyl-4-((2S,3′S)-2-methyl-[1,3′]bipyrrolidinyl-1′-yl)phenyl] amide as histamine H3 receptor antagonist for the treatment of depression
Bioorganic & Medicinal Chemistry Letters 2013.0
Design of a New Histamine H<sub>3</sub> Receptor Antagonist Chemotype: (3aR,6aR)-5-Alkyl-1-aryl-octahydropyrrolo[3,4-b]pyrroles, Synthesis, and Structure−Activity Relationships
Journal of Medicinal Chemistry 2009.0
Synthesis and in Vitro Pharmacology of a Series of New Chiral Histamine H<sub>3</sub>-Receptor Ligands:  2-(RandS)-Amino-3-(1H-imidazol-4(5)-yl)propyl Ether Derivatives
Journal of Medicinal Chemistry 1999.0
Chlorophenoxy aminoalkyl derivatives as histamine H3R ligands and antiseizure agents
Bioorganic &amp; Medicinal Chemistry 2016.0
Optimization and preclinical evaluation of novel histamine H3receptor ligands: Acetyl and propionyl phenoxyalkyl piperazine derivatives
Bioorganic &amp; Medicinal Chemistry 2018.0
Non-imidazole histamine H3 receptor ligands incorporating antiepileptic moieties
European Journal of Medicinal Chemistry 2014.0
Heterocyclic replacement of the central phenyl core of diamine-based histamine H3 receptor antagonists
European Journal of Medicinal Chemistry 2009.0
Development of a New Class of Nonimidazole Histamine H<sub>3</sub> Receptor Ligands with Combined Inhibitory Histamine N-Methyltransferase Activity
Journal of Medicinal Chemistry 2002.0