In Vitro Efficacy of New Antifolates against Trimethoprim-Resistant Bacillus anthracis

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

Bacillus anthracis is innately resistant to trimethoprim (TMP), a synthetic antifolate that selectively inhibits several bacterial dihydrofolate reductases (DHFRs) but not human DHFR. Previously, we were able to confirm that TMP resistance in B. anthracis (MIC > 2,048 microg/ml) is due to the lack of selectivity of TMP for the B. anthracis DHFR (E. W. Barrow, P. C. Bourne, and W. W. Barrow, Antimicrob. Agents Chemother. 48:4643-4649, 2004). In this investigation, 24 2,4-diaminopyrimidine derivatives, representing a class of compounds with dihydrophthalazine side chains, were screened for their in vitro effects on B. anthracis Sterne and their selectivities for the B. anthracis DHFR. MICs were obtained by a colorimetric (Alamar blue) broth microdilution assay. Purified human recombinant DHFR (rDHFR) and B. anthracis rDHFR were used in a validated enzyme assay to determine the 50% inhibitory concentrations (IC(50)s) and the selectivity ratios of the derivatives. The MICs ranged from 12.8 to 128 microg/ml for all but nine compounds, for which the MICs were > or =128 microg/ml. The IC(50) values for B. anthracis rDHFR ranged from 46 to 600 nM, whereas the IC(50) values for human rDHFR were >16,000 nM. This is the first report on the in vitro inhibitory actions of this class of antifolates against TMP-resistant B. anthracis isolates. The selective inhibition of B. anthracis rDHFR and the in vitro activity against B. anthracis demonstrate that members of this class of compounds have the potential to be developed into clinically important therapeutic choices for the treatment of infections caused by TMP-resistant bacteria, such as B. anthracis.

Knowledge Graph

Similar Paper

In Vitro Efficacy of New Antifolates against Trimethoprim-Resistant Bacillus anthracis
Antimicrobial Agents and Chemotherapy 2007.0
Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase
Journal of Medicinal Chemistry 2008.0
Crystal Structure of Bacillus anthracis Dihydrofolate Reductase with the Dihydrophthalazine-Based Trimethoprim Derivative RAB1 Provides a Structural Explanation of Potency and Selectivity
Antimicrobial Agents and Chemotherapy 2009.0
Crystal Structure of the Anthrax Drug Target, Bacillus anthracis Dihydrofolate Reductase
Journal of Medicinal Chemistry 2007.0
Further Studies on 2,4-Diamino-5-(2‘,5‘-disubstituted benzyl)pyrimidines as Potent and Selective Inhibitors of Dihydrofolate Reductases from Three Major Opportunistic Pathogens of AIDS
Journal of Medicinal Chemistry 2003.0
Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships
Journal of Medicinal Chemistry 2010.0
Structure-based design of new DHFR-based antibacterial agents: 7-aryl-2,4-diaminoquinazolines
Bioorganic & Medicinal Chemistry Letters 2011.0
In Vitro and In Vivo Properties of Dihydrophthalazine Antifolates, a Novel Family of Antibacterial Drugs
Antimicrobial Agents and Chemotherapy 2009.0
Antifolates as effective antimicrobial agents: new generations of trimethoprim analogs
MedChemComm 2013.0
New 2,4-Diamino-5-(2‘,5‘-substituted benzyl)pyrimidines as Potential Drugs against Opportunistic Infections of AIDS and Other Immune Disorders. Synthesis and Species-Dependent Antifolate Activity
Journal of Medicinal Chemistry 2004.0