Carbonic anhydrase inhibitors. Inhibition of the fungal β-carbonic anhydrases from Candida albicans and Cryptococcus neoformans with boronic acids

Bioorganic & Medicinal Chemistry Letters
2009.0

Abstract

Inhibition of the beta-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic fungi Cryptococcus neoformans (Can2) and Candida albicans (Nce103) with a series of aromatic, arylalkenyl- and arylalkylboronic acids was investigated. Aromatic, 4-phenylsubstituted- and 2-naphthylboronic acids were the best Can2 inhibitors, with inhibition constants in the range of 8.5-11.5microM, whereas arylalkenyl and aryalkylboronic acids showed K(I)s in the range of 428-3040microM. Nce103 showed a similar inhibition profile, with the 4-phenylsubstituted- and 2-naphthylboronic acids possessing K(I)s in the range of 7.8-42.3microM, whereas the arylalkenyl and aryalkylboronic acids were weaker inhibitors (K(I)s of 412-5210microM). The host human enzymes CA I and II were also effectively inhibited by these boronic acids. The B(OH)(2) moiety is thus a new zinc-binding group for designing effective inhibitors of the alpha- and beta-CAs.

Knowledge Graph

Similar Paper

Carbonic anhydrase inhibitors. Inhibition of the fungal β-carbonic anhydrases from Candida albicans and Cryptococcus neoformans with boronic acids
Bioorganic & Medicinal Chemistry Letters 2009.0
Carbonic anhydrase inhibitors. Inhibition of the β-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with branched aliphatic/aromatic carboxylates and their derivatives
Bioorganic & Medicinal Chemistry Letters 2011.0
Carbonic anhydrase inhibitors: Inhibition of the β-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with simple anions
Bioorganic & Medicinal Chemistry Letters 2008.0
Bortezomib inhibits bacterial and fungal β-carbonic anhydrases
Bioorganic & Medicinal Chemistry 2016.0
Carbonic anhydrase inhibitors. The β-carbonic anhydrases from the fungal pathogens Cryptococcus neoformans and Candida albicans are strongly inhibited by substituted-phenyl-1H-indole-5-sulfonamides
Bioorganic & Medicinal Chemistry Letters 2010.0
Benzoxaboroles as Efficient Inhibitors of the β-Carbonic Anhydrases from Pathogenic Fungi: Activity and Modeling Study
ACS Medicinal Chemistry Letters 2017.0
Carbonic anhydrase inhibitors. Inhibition and homology modeling studies of the fungal β-carbonic anhydrase from Candida albicans with sulfonamides
Bioorganic & Medicinal Chemistry 2009.0
Isatin analogs as novel inhibitors of Candida spp. β-carbonic anhydrase enzymes
Bioorganic & Medicinal Chemistry 2016.0
Inhibition of α-class cytosolic human carbonic anhydrases I, II, IX and XII, and β-class fungal enzymes by carboxylic acids and their derivatives: New isoform-I selective nanomolar inhibitors
Bioorganic & Medicinal Chemistry Letters 2012.0
Carbonic anhydrase inhibitors. Benzenesulfonamides incorporating cyanoacrylamide moieties strongly inhibit Saccharomyces cerevisiae β-carbonic anhydrase
Bioorganic & Medicinal Chemistry Letters 2013.0