Novel, Potent, and Selective Quinoxaline-Based 5-HT3Receptor Ligands. 1. Further Structure−Activity Relationships and Pharmacological Characterization

Journal of Medicinal Chemistry
2009.0

Abstract

We investigated the pharmacological profile of a novel series of quinoxaline-based 5-HT(3) receptor ligands bearing an extra basic moiety on the piperazine N-4. High affinity and selectivity were dependent on the electronic properties of the substituents, and at cardiac level 3a and 3c modulated chronotropy but not inotropy. In von Bezold-Jarisch reflex test 3a-c were partial agonists while 3i was a full agonist. Preliminary pharmacokinetic studies indicated that 3a is a brain penetrating agent.

Knowledge Graph

Similar Paper

Novel, Potent, and Selective Quinoxaline-Based 5-HT<sub>3</sub>Receptor Ligands. 1. Further Structure−Activity Relationships and Pharmacological Characterization
Journal of Medicinal Chemistry 2009.0
Specific Targeting of Peripheral Serotonin 5-HT<sub>3</sub>Receptors. Synthesis, Biological Investigation, and Structure−Activity Relationships
Journal of Medicinal Chemistry 2009.0
Novel Potent and Selective Central 5-HT<sub>3</sub> Receptor Ligands Provided with Different Intrinsic Efficacy. 1. Mapping the Central 5-HT<sub>3</sub> Receptor Binding Site by Arylpiperazine Derivatives
Journal of Medicinal Chemistry 1998.0
Novel and Highly Potent 5-HT<sub>3</sub> Receptor Agonists Based on a Pyrroloquinoxaline Structure
Journal of Medicinal Chemistry 1997.0
Novel Potent and Selective Central 5-HT<sub>3</sub> Receptor Ligands Provided with Different Intrinsic Efficacy. 2. Molecular Basis of the Intrinsic Efficacy of Arylpiperazine Derivatives at the Central 5-HT<sub>3</sub> Receptors
Journal of Medicinal Chemistry 1999.0
Pyrroloquinoxaline Derivatives as High-Affinity and Selective 5-HT<sub>3</sub> Receptor Agonists:  Synthesis, Further Structure−Activity Relationships, and Biological Studies
Journal of Medicinal Chemistry 1999.0
Novel and Selective Partial Agonists of 5-HT<sub>3</sub> Receptors. 2. Synthesis and Biological Evaluation of Piperazinopyridopyrrolopyrazines, Piperazinopyrroloquinoxalines, and Piperazinopyridopyrroloquinoxalines
Journal of Medicinal Chemistry 1997.0
Further Studies on the Interaction of the 5-Hydroxytryptamine<sub>3</sub>(5-HT<sub>3</sub>) Receptor with Arylpiperazine Ligands. Development of a New 5-HT<sub>3</sub>Receptor Ligand Showing Potent Acetylcholinesterase Inhibitory Properties
Journal of Medicinal Chemistry 2005.0
Novel, Potent, and Selective 5-HT3 Receptor Antagonists Based on the Arylpiperazine Skeleton: Synthesis, Structure, Biological Activity, and Comparative Molecular Field Analysis Studies
Journal of Medicinal Chemistry 1995.0
N-(quinuclidin-3-YL)-1,8,-naphthalimides with 5-HT3 receptor antagonist and 5-HT4 receptor agonist properties
Bioorganic &amp; Medicinal Chemistry Letters 1993.0