Novel Potent and Selective Central 5-HT3 Receptor Ligands Provided with Different Intrinsic Efficacy. 1. Mapping the Central 5-HT3 Receptor Binding Site by Arylpiperazine Derivatives

Journal of Medicinal Chemistry
1998.0

Abstract

Synthesis and pharmacological evaluation of a series of condensed quinoline and pyridine derivatives bearing a N-methylpiperazine moiety attached to the 2-position of the quinoline or pyridine nucleus are described. 5-HT receptor binding studies revealed subnanomolar affinity for the 5-HT3 receptor subtype in some of the compounds under study. The most active compound (5b) displayed a Ki value about 1 order of magnitude higher than that of quipazine along with a higher selectivity. The potential 5-HT3 agonist/antagonist activity of four selected compounds was assessed in vitro on 5-HT3 receptor-dependent [14C]guanidinium uptake in NG 108-15 cells. Compound 5j acted as a 5-HT3 agonist in this assay with an EC50 value close to that reported for quipazine, while 5b was a partial agonist with an EC50 value of about 0.25 nM, and compound 5c possessed antagonist properties with an IC50 value (approximately 8 nM) in the same range as those of previously characterized 5-HT3 receptor antagonists. Qualitative and quantitative structure-affinity relationship studies carried out by making use of theoretical molecular descriptors allowed to elucidate the role of the main pharmacophoric components and to develop a model for the interaction of the 5-HT3 ligands related to quipazine with their receptor.

Knowledge Graph

Similar Paper

Novel Potent and Selective Central 5-HT<sub>3</sub> Receptor Ligands Provided with Different Intrinsic Efficacy. 1. Mapping the Central 5-HT<sub>3</sub> Receptor Binding Site by Arylpiperazine Derivatives
Journal of Medicinal Chemistry 1998.0
Novel Potent and Selective Central 5-HT<sub>3</sub> Receptor Ligands Provided with Different Intrinsic Efficacy. 2. Molecular Basis of the Intrinsic Efficacy of Arylpiperazine Derivatives at the Central 5-HT<sub>3</sub> Receptors
Journal of Medicinal Chemistry 1999.0
Novel, Potent, and Selective 5-HT3 Receptor Antagonists Based on the Arylpiperazine Skeleton: Synthesis, Structure, Biological Activity, and Comparative Molecular Field Analysis Studies
Journal of Medicinal Chemistry 1995.0
Pyrroloquinoxaline Derivatives as High-Affinity and Selective 5-HT<sub>3</sub> Receptor Agonists:  Synthesis, Further Structure−Activity Relationships, and Biological Studies
Journal of Medicinal Chemistry 1999.0
Novel and Selective Partial Agonists of 5-HT<sub>3</sub> Receptors. 2. Synthesis and Biological Evaluation of Piperazinopyridopyrrolopyrazines, Piperazinopyrroloquinoxalines, and Piperazinopyridopyrroloquinoxalines
Journal of Medicinal Chemistry 1997.0
Further Studies on the Interaction of the 5-Hydroxytryptamine<sub>3</sub>(5-HT<sub>3</sub>) Receptor with Arylpiperazine Ligands. Development of a New 5-HT<sub>3</sub>Receptor Ligand Showing Potent Acetylcholinesterase Inhibitory Properties
Journal of Medicinal Chemistry 2005.0
Novel and Highly Potent 5-HT<sub>3</sub> Receptor Agonists Based on a Pyrroloquinoxaline Structure
Journal of Medicinal Chemistry 1997.0
Novel, Potent, and Selective Quinoxaline-Based 5-HT<sub>3</sub>Receptor Ligands. 1. Further Structure−Activity Relationships and Pharmacological Characterization
Journal of Medicinal Chemistry 2009.0
Structure−Activity Relationships for the Binding of Arylpiperazines and Arylbiguanides at 5-HT<sub>3</sub>Serotonin Receptors
Journal of Medicinal Chemistry 1996.0
Specific Targeting of Peripheral Serotonin 5-HT<sub>3</sub>Receptors. Synthesis, Biological Investigation, and Structure−Activity Relationships
Journal of Medicinal Chemistry 2009.0